You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/jit/benchmark.cc

569 lines
19 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include <iostream>
#include <random>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/platform/device_tracer.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/platform/variant.h" // for UNUSED
DEFINE_int32(burning, 10, "Burning times.");
DEFINE_int32(repeat, 3000, "Repeat times.");
DEFINE_int32(max_size, 1000, "The Max size would be tested.");
DEFINE_string(filter, "", "The Benchmark name would be run.");
class BenchJITKernel {
public:
BenchJITKernel() = default;
virtual ~BenchJITKernel() = default;
virtual void Run() = 0;
virtual const char* Name() = 0;
virtual const char* Dtype() = 0;
virtual const char* Place() = 0;
};
static std::vector<BenchJITKernel*> g_all_benchmarks;
BenchJITKernel* InsertBenchmark(BenchJITKernel* b) {
g_all_benchmarks.push_back(b);
return b;
}
#define BENCH_JITKERNEL(name, dtype, place) \
class BenchJITKernel_##name##_##dtype##_##place##_ : public BenchJITKernel { \
public: \
const char* Name() override { return #name; } \
const char* Dtype() override { return #dtype; } \
const char* Place() override { return #place; } \
void Run() override; \
}; \
static auto inserted_##name##_##dtype##_##place##_ UNUSED = \
InsertBenchmark(new BenchJITKernel_##name##_##dtype##_##place##_()); \
void BenchJITKernel_##name##_##dtype##_##place##_::Run()
void RUN_ALL_BENCHMARK() {
for (auto p : g_all_benchmarks) {
if (!FLAGS_filter.empty() && FLAGS_filter != p->Name()) {
continue;
}
LOG(INFO) << "Benchmark " << p->Name() << "." << p->Dtype() << "."
<< p->Place();
p->Run();
}
}
template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
const T upper = static_cast<T>(20.f), unsigned int seed = 100) {
std::mt19937 rng(seed);
std::uniform_real_distribution<double> uniform_dist(0, 1);
for (int i = 0; i < n; ++i) {
a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
}
}
std::vector<int> TestSizes() {
std::vector<int> s;
for (int i = 1; i <= FLAGS_max_size; ++i) {
s.push_back(i);
}
return s;
}
template <typename KernelTuple, typename... Args>
struct BenchFunc {
// return this function avg time
// TODO(TJ): clear cache every time
double operator()(const typename KernelTuple::func_type tgt, Args... args) {
for (int i = 0; i < FLAGS_burning; ++i) {
tgt(args...);
}
auto start = paddle::platform::PosixInNsec() * 1e-3;
for (int i = 0; i < FLAGS_repeat; ++i) {
tgt(args...);
}
auto end = paddle::platform::PosixInNsec() * 1e-3;
return static_cast<double>(end - start) / FLAGS_repeat;
}
};
namespace jit = paddle::operators::jit;
template <typename KernelTuple, typename PlaceType, typename... Args>
void BenchAllImpls(const typename KernelTuple::attr_type& attr, Args... args) {
BenchFunc<KernelTuple, Args...> benchmark;
std::vector<std::pair<std::string, double>> infos;
auto funcs = jit::GetAllCandidateFuncsWithTypes<KernelTuple, PlaceType>(attr);
for (auto f : funcs) {
infos.push_back(std::make_pair(f.first, benchmark(f.second, args...)));
}
// Test result from Get function
auto tgt = jit::KernelFuncs<KernelTuple, PlaceType>::Cache().At(attr);
if (!tgt) {
LOG(FATAL) << "Target can not be empty!";
}
infos.push_back(std::make_pair("Target", benchmark(tgt, args...)));
// print
std::ostringstream loginfos;
loginfos << "Kernel Type " << jit::to_string(KernelTuple::kernel_type) << ": "
<< attr << ": ";
for (auto pair : infos) {
loginfos << pair.first << " takes " << pair.second << " us; ";
}
LOG(INFO) << loginfos.str();
}
using Tensor = paddle::framework::Tensor;
template <typename KernelTuple, typename PlaceType>
void BenchKernelXYZN() {
using T = typename KernelTuple::data_type;
for (int d : TestSizes()) {
Tensor x, y, z;
x.Resize({d});
y.Resize({d});
z.Resize({d});
T* x_data = x.mutable_data<T>(PlaceType());
T* y_data = y.mutable_data<T>(PlaceType());
T* z_data = z.mutable_data<T>(PlaceType());
RandomVec<T>(d, x_data);
RandomVec<T>(d, y_data);
BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), y.data<T>(), z_data,
d);
// test inplace
BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), z_data, z_data, d);
}
}
template <typename KernelTuple, typename PlaceType>
void BenchKernelAXYN() {
using T = typename KernelTuple::data_type;
for (int d : TestSizes()) {
const T a = static_cast<T>(3);
Tensor x, y;
x.Resize({d});
y.Resize({d});
T* x_data = x.mutable_data<T>(PlaceType());
T* y_data = y.mutable_data<T>(PlaceType());
RandomVec<T>(d, x_data);
BenchAllImpls<KernelTuple, PlaceType>(d, &a, x.data<T>(), y_data, d);
// test inplace
BenchAllImpls<KernelTuple, PlaceType>(d, &a, x.data<T>(), x_data, d);
}
}
template <typename KernelTuple, typename PlaceType>
void BenchKernelXRN() {
using T = typename KernelTuple::data_type;
for (int d : TestSizes()) {
Tensor x;
RandomVec<T>(d, x.mutable_data<T>({d}, PlaceType()));
T res;
BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), &res, d);
}
}
template <typename KernelTuple, typename PlaceType>
void BenchKernelXYN() {
using T = typename KernelTuple::data_type;
for (int d : TestSizes()) {
Tensor x, y;
x.Resize({d});
y.Resize({d});
T* x_data = x.mutable_data<T>(PlaceType());
T* y_data = y.mutable_data<T>(PlaceType());
RandomVec<T>(d, x_data);
BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), y_data, d);
}
}
template <typename KernelTuple, typename PlaceType>
void BenchKernelLSTM() {
using T = typename KernelTuple::data_type;
for (bool use_peephole : {true, false}) {
for (int d : TestSizes()) {
const jit::lstm_attr_t attr(d, jit::kVSigmoid, jit::kVTanh, jit::kVTanh,
use_peephole);
Tensor x, ct_1, ct, ht, wp, checked;
x.Resize({4 * d});
ct_1.Resize({d});
ct.Resize({d});
ht.Resize({d});
wp.Resize({3 * d});
checked.Resize({2 * d});
auto place = PlaceType();
RandomVec<T>(x.numel(), x.mutable_data<T>(place), -2.f, 2.f);
RandomVec<T>(wp.numel(), wp.mutable_data<T>(place), -2.f, 2.f);
RandomVec<T>(ct_1.numel(), ct_1.mutable_data<T>(place), -2.f, 2.f);
const T* ct_1_data = ct_1.data<T>();
const T* wp_data = wp.data<T>();
T* x_data = x.mutable_data<T>(place);
T* checked_data = checked.mutable_data<T>(place);
T* ct_data = ct.mutable_data<T>(place);
T* ht_data = ht.mutable_data<T>(place);
jit::lstm_t step;
step.gates = x_data;
step.ct_1 = ct_1_data;
step.ct = ct_data;
step.ht = ht_data;
if (use_peephole) {
step.wp = wp_data;
step.checked = checked_data;
}
BenchAllImpls<KernelTuple, PlaceType>(attr, &step, &attr);
}
}
}
template <typename KernelTuple, typename PlaceType>
void BenchKernelGRU() {
using T = typename KernelTuple::data_type;
for (int d : TestSizes()) {
const jit::gru_attr_t attr(d, jit::kVSigmoid, jit::kVTanh);
auto place = PlaceType();
Tensor x, ht_1, ht;
x.Resize({3 * d});
ht_1.Resize({d});
ht.Resize({d});
RandomVec<T>(3 * d, x.mutable_data<T>(place), -2.f, 2.f);
RandomVec<T>(d, ht_1.mutable_data<T>(place), -2.f, 2.f);
const T* ht_1_data = ht_1.data<T>();
T* x_data = x.mutable_data<T>(place);
T* ht_data = ht.mutable_data<T>(place);
jit::gru_t step;
step.gates = x_data;
step.ht_1 = ht_1_data;
step.ht = ht_data;
BenchAllImpls<KernelTuple, PlaceType>(attr, &step, &attr);
}
}
template <typename KernelTuple, typename PlaceType>
void BenchKernelSeqPool() {
using T = typename KernelTuple::data_type;
std::vector<jit::SeqPoolType> pool_types = {
jit::SeqPoolType::kSum, jit::SeqPoolType::kAvg, jit::SeqPoolType::kSqrt};
for (auto type : pool_types) {
for (int w : TestSizes()) {
jit::seq_pool_attr_t attr(w, type);
for (int h : TestSizes()) {
attr.h = h;
Tensor x, y;
x.Resize({h * w});
y.Resize({w});
RandomVec<T>(h * w, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
const T* x_data = x.data<T>();
T* y_data = y.mutable_data<T>(PlaceType());
BenchAllImpls<KernelTuple, PlaceType>(attr, x_data, y_data, &attr);
}
}
}
}
template <typename KernelTuple, typename PlaceType>
void BenchKernelEmbSeqPool() {
using T = typename KernelTuple::data_type;
std::vector<jit::SeqPoolType> pool_types = {jit::SeqPoolType::kSum};
int64_t tbl_h = 1e4;
for (int tbl_w : {10, 16, 256}) {
Tensor table;
table.Resize({tbl_h, tbl_w});
RandomVec<T>(tbl_h * tbl_w, table.mutable_data<T>(PlaceType()), -2.f, 2.f);
const T* table_data = table.data<T>();
for (auto type : pool_types) {
for (int idx_w : {1, 2, 10, 16}) {
for (int idx_h : {1, 2, 9, 13, 16}) {
int64_t out_w = tbl_w * idx_w;
jit::emb_seq_pool_attr_t attr(tbl_h, tbl_w, idx_h, idx_w, out_w,
type);
Tensor idx, out;
idx.Resize({idx_h, idx_w});
out.Resize({out_w});
RandomVec<int64_t>(idx_h * idx_w,
idx.mutable_data<int64_t>(PlaceType()), 0,
tbl_h - 1);
const int64_t* idx_data = idx.data<int64_t>();
T* o_data = out.mutable_data<T>(PlaceType());
BenchAllImpls<KernelTuple, PlaceType>(attr, table_data, idx_data,
o_data, &attr);
}
}
}
}
}
template <typename KernelTuple, typename PlaceType>
void BenchKernelSgd() {
using T = typename KernelTuple::data_type;
const T lr = 0.1;
auto UnDuplicatedRandomVec = [](int n, const int64_t lower,
const int64_t upper) -> std::vector<int64_t> {
PADDLE_ENFORCE_LE(static_cast<size_t>(upper - lower), n - 1);
PADDLE_ENFORCE_GT(n, 0);
std::vector<int64_t> all, out;
for (int i = 0; i < n; ++i) {
all.push_back(i);
}
std::random_shuffle(all.begin(), all.end());
out.insert(out.begin(), all.begin(), all.begin() + n);
return out;
};
for (int param_h : {1, 1000}) {
for (int grad_w : {1, 2, 8, 16, 30, 256}) {
// only benchmark inplace
Tensor param;
param.Resize({param_h, grad_w});
T* param_data = param.mutable_data<T>(PlaceType());
RandomVec<T>(param_h * grad_w, param_data, -2.f, 2.f);
for (int rows_size = 1; rows_size <= std::min(param_h, 10); ++rows_size) {
Tensor grad;
grad.Resize({rows_size, grad_w});
std::vector<int64_t> rows =
UnDuplicatedRandomVec(rows_size, 0, rows_size - 1);
RandomVec<T>(rows_size * grad_w, grad.mutable_data<T>(PlaceType()),
-2.f, 2.f);
const T* grad_data = grad.data<T>();
const int64_t* rows_data = rows.data();
jit::sgd_attr_t attr(param_h, grad_w, rows_size, grad_w, rows_size);
BenchAllImpls<KernelTuple, PlaceType>(attr, &lr, param_data, grad_data,
rows_data, param_data, &attr);
}
}
}
}
template <typename KernelTuple, typename PlaceType>
void BenchKernelMatMul() {
using T = typename KernelTuple::data_type;
for (int m : {1, 2, 3, 4}) {
for (int n : TestSizes()) {
for (int k : TestSizes()) {
Tensor a, b, c;
a.Resize({m * k});
b.Resize({k * n});
c.Resize({m * n});
RandomVec<T>(m * k, a.mutable_data<T>(PlaceType()), -2.f, 2.f);
RandomVec<T>(k * n, b.mutable_data<T>(PlaceType()), -2.f, 2.f);
const T* a_data = a.data<T>();
const T* b_data = b.data<T>();
T* c_data = c.mutable_data<T>(PlaceType());
const jit::matmul_attr_t attr{m, n, k};
BenchAllImpls<KernelTuple, PlaceType>(attr, a_data, b_data, c_data,
&attr);
}
}
}
}
template <typename KernelTuple, typename PlaceType>
void BenchKernelSoftmax() {
using T = typename KernelTuple::data_type;
for (int bs : {1, 2, 10}) {
for (int n : TestSizes()) {
Tensor x, y;
x.Resize({bs, n});
y.Resize({bs, n});
RandomVec<T>(bs * n, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
const T* x_data = x.data<T>();
T* y_data = y.mutable_data<T>(PlaceType());
BenchAllImpls<KernelTuple, PlaceType>(n, x_data, y_data, n, bs, 1);
}
}
}
template <typename KernelTuple, typename PlaceType>
void BenchKernelLayerNorm() {
using T = typename KernelTuple::data_type;
const T epsilon = 9.99999975e-06;
for (int n : {1, 2, 10}) {
for (int x_dim_0 : {1, 9, 17, 50}) {
int left = n * x_dim_0;
for (int x_dim_1 : TestSizes()) {
int right = x_dim_1;
int sz = left * right;
Tensor x, mean, var, scale, bias, out;
x.Resize({n, x_dim_0, x_dim_1});
out.Resize({n, x_dim_0, x_dim_1});
mean.Resize({n, x_dim_0});
var.Resize({n, x_dim_0});
scale.Resize({x_dim_1});
bias.Resize({x_dim_1});
RandomVec<T>(sz, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
RandomVec<T>(left, mean.mutable_data<T>(PlaceType()), -2.f, 2.f);
RandomVec<T>(left, var.mutable_data<T>(PlaceType()), -2.f, 2.f);
RandomVec<T>(right, scale.mutable_data<T>(PlaceType()), -2.f, 2.f);
RandomVec<T>(right, bias.mutable_data<T>(PlaceType()), -2.f, 2.f);
const T* scale_data = scale.data<T>();
const T* bias_data = bias.data<T>();
T* x_data = x.data<T>();
T* mean_data = mean.data<T>();
T* var_data = var.data<T>();
T* out_data = out.mutable_data<T>(PlaceType());
BenchAllImpls<KernelTuple, PlaceType>(right, x_data, out_data,
mean_data, var_data, scale_data,
bias_data, left, epsilon, right);
}
}
}
}
template <typename KernelTuple, typename PlaceType>
void BenchKernelCRFDecoding() {
using T = typename KernelTuple::data_type;
constexpr int state_trans_base_idx = 2;
for (int seq_len : {1, 11, 17, 50}) {
for (int tag_num : TestSizes()) {
int x_sz = seq_len * tag_num;
int w_sz = (tag_num + state_trans_base_idx) * tag_num;
Tensor x, w, alpha, track;
x.Resize({seq_len, tag_num});
w.Resize({tag_num + state_trans_base_idx, tag_num});
alpha.Resize({seq_len, tag_num});
track.Resize({seq_len, tag_num});
RandomVec<T>(x_sz, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
RandomVec<T>(w_sz, w.mutable_data<T>(PlaceType()), -2.f, 2.f);
const T* x_data = x.data<T>();
const T* w_data = w.data<T>();
T* alpha_data = alpha.mutable_data<T>(PlaceType());
int* track_data = track.mutable_data<int>(PlaceType());
BenchAllImpls<KernelTuple, PlaceType>(tag_num, seq_len, x_data, w_data,
alpha_data, track_data, tag_num);
}
}
}
template <typename KernelTuple, typename PlaceType>
void BenchKernelVBroadcast() {
using T = typename KernelTuple::data_type;
for (int64_t w : {1, 16, 64, 100, 256}) {
Tensor x;
x.Resize({w});
RandomVec<T>(w, x.mutable_data<T>(PlaceType()));
const T* x_data = x.data<T>();
for (int h : TestSizes()) {
Tensor y;
y.Resize({h * w});
T* y_data = y.mutable_data<T>(PlaceType());
BenchAllImpls<KernelTuple, PlaceType>(w, x_data, y_data,
static_cast<int64_t>(h), w);
}
}
}
#define BenchKernelVMul BenchKernelXYZN
#define BenchKernelVAdd BenchKernelXYZN
#define BenchKernelVAddRelu BenchKernelXYZN
#define BenchKernelVSub BenchKernelXYZN
#define BenchKernelVScal BenchKernelAXYN
#define BenchKernelVAddBias BenchKernelAXYN
#define BenchKernelVRelu BenchKernelXYN
#define BenchKernelVIdentity BenchKernelXYN
#define BenchKernelVSquare BenchKernelXYN
#define BenchKernelVExp BenchKernelXYN
#define BenchKernelVSigmoid BenchKernelXYN
#define BenchKernelVTanh BenchKernelXYN
#define BenchKernelVCopy BenchKernelXYN
#define BenchKernelHMax BenchKernelXRN
#define BenchKernelHSum BenchKernelXRN
#define BenchKernelLSTMCtHt BenchKernelLSTM
#define BenchKernelLSTMC1H1 BenchKernelLSTM
#define BenchKernelGRUH1 BenchKernelGRU
#define BenchKernelGRUHtPart1 BenchKernelGRU
#define BenchKernelGRUHtPart2 BenchKernelGRU
using CPUPlace = paddle::platform::CPUPlace;
#define BENCH_FP32_CPU(name) \
BENCH_JITKERNEL(name, FP32, CPU) { \
BenchKernel##name<jit::name##Tuple<float>, CPUPlace>(); \
}
// xyzn
BENCH_FP32_CPU(VMul);
BENCH_FP32_CPU(VAdd);
BENCH_FP32_CPU(VAddRelu);
BENCH_FP32_CPU(VSub);
// axyn
BENCH_FP32_CPU(VScal);
BENCH_FP32_CPU(VAddBias);
// xyn
BENCH_FP32_CPU(VRelu);
BENCH_FP32_CPU(VIdentity);
BENCH_FP32_CPU(VSquare);
BENCH_FP32_CPU(VExp);
BENCH_FP32_CPU(VSigmoid);
BENCH_FP32_CPU(VTanh);
BENCH_FP32_CPU(VCopy);
// xrn
BENCH_FP32_CPU(HMax);
BENCH_FP32_CPU(HSum);
// LSTM
BENCH_FP32_CPU(LSTMCtHt);
BENCH_FP32_CPU(LSTMC1H1);
// GRU
BENCH_FP32_CPU(GRUH1);
BENCH_FP32_CPU(GRUHtPart1);
BENCH_FP32_CPU(GRUHtPart2);
BENCH_FP32_CPU(LayerNorm);
BENCH_FP32_CPU(CRFDecoding);
BENCH_FP32_CPU(SeqPool);
BENCH_FP32_CPU(EmbSeqPool);
BENCH_FP32_CPU(MatMul);
BENCH_FP32_CPU(Softmax);
BENCH_FP32_CPU(Sgd);
BENCH_FP32_CPU(VBroadcast);
// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
// Options:
// --burning: the burning time before count
// --repeat: the repeat times
// --max_size: the max size would be tested
// --filter: the bench name would be run
int main(int argc, char* argv[]) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
google::InitGoogleLogging(argv[0]);
LOG(INFO) << "Burning " << FLAGS_burning << " times, Repeat " << FLAGS_repeat
<< " times.";
RUN_ALL_BENCHMARK();
}