You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
148 lines
5.4 KiB
148 lines
5.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/prelu_op.h"
|
|
#include <string>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class PReluOp : public framework::OperatorWithKernel {
|
|
public:
|
|
PReluOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
std::string mode = ctx->Attrs().Get<std::string>("mode");
|
|
|
|
auto x_dim = ctx->GetInputDim("X");
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of PreluOp should not be null");
|
|
PADDLE_ENFORCE(ctx->HasInput("Alpha"),
|
|
"Input(Alpha) of PreluOp should not be null");
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of PreluOp should not be null");
|
|
if (mode == "all") {
|
|
PADDLE_ENFORCE(product(ctx->GetInputDim("Alpha")) == 1,
|
|
"For mode 'all', size of weight Alpha must be one.");
|
|
} else if (mode == "channel") {
|
|
PADDLE_ENFORCE(product(ctx->GetInputDim("Alpha")) == x_dim[1],
|
|
"For channel-wise mode, size of weight Alpha must be "
|
|
"equal to the number of channels, should be %d",
|
|
x_dim[1]);
|
|
} else if (mode == "element") {
|
|
auto alpha_dim = ctx->GetInputDim("Alpha");
|
|
auto alpha_rank = alpha_dim.size();
|
|
auto x_rank = x_dim.size();
|
|
size_t x_product = 1;
|
|
size_t alpha_product = 1;
|
|
PADDLE_ENFORCE_EQ(alpha_rank, x_rank,
|
|
"For element-wise mode, rank of weight Alpha must be ",
|
|
"equal to the rank of input.");
|
|
for (int64_t i = x_rank - 1; i > 0; i--) {
|
|
x_product *= x_dim[i];
|
|
alpha_product *= alpha_dim[i];
|
|
}
|
|
PADDLE_ENFORCE_EQ(x_product, alpha_product,
|
|
"For element-wise mode, size of weight Alpha must be "
|
|
"equal to the number of input.");
|
|
} else {
|
|
PADDLE_THROW("Unkown mode %s", mode);
|
|
}
|
|
ctx->ShareDim("X", /*->*/ "Out");
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class PReluOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "The input tensor of prelu operator.");
|
|
AddInput("Alpha", "The alpha weight of prelu operator.");
|
|
AddOutput("Out", "The output tensor of prelu operator.");
|
|
AddComment(R"DOC(
|
|
PRelu Operator.
|
|
The equation is:
|
|
$$
|
|
f(x) =
|
|
\begin{cases}
|
|
\alpha * x, \quad \text{if} \ x < 0 \\
|
|
x, \qquad \text{if} \ x >= 0
|
|
\end{cases}
|
|
$$
|
|
The input `X` can carry the LoD (Level of Details) information,
|
|
or not. And the output shares the LoD information with input `X`.
|
|
There are modes:
|
|
all: all elements share same weight
|
|
channel: elements in a channel share same weight
|
|
element: each element has a weight
|
|
)DOC");
|
|
AddAttr<std::string>("mode", "The mode for inputs to share weights.")
|
|
.SetDefault("all");
|
|
}
|
|
};
|
|
|
|
// The operator to calculate gradients of a prelu operator.
|
|
class PReluGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) should not be null");
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
auto alpha_grad_name = framework::GradVarName("Alpha");
|
|
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
|
|
}
|
|
if (ctx->HasOutput(alpha_grad_name)) {
|
|
ctx->SetOutputDim(alpha_grad_name, ctx->GetInputDim("Alpha"));
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(
|
|
prelu, ops::PReluOp, ops::PReluOpMaker,
|
|
paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
|
|
paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
|
|
REGISTER_OPERATOR(prelu_grad, ops::PReluGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
prelu, ops::PReluKernel<paddle::platform::CPUDeviceContext, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
prelu_grad,
|
|
ops::PReluGradKernel<paddle::platform::CPUDeviceContext, float>);
|