You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
195 lines
7.7 KiB
195 lines
7.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/psroi_pool_op.h"
|
|
#include <memory>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
class PSROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"Tensor, "
|
|
"the input of PSROIPoolOp. "
|
|
"The format of input tensor is NCHW. Where N is the batch size, "
|
|
"C is the number of input channels, "
|
|
"H is the height of the input feature map, and "
|
|
"W is the width. The data type can be float32 or float64");
|
|
AddInput("ROIs",
|
|
"LoDTensor, "
|
|
"ROIs (Regions of Interest) to pool over. "
|
|
"should be a 2-D LoDTensor of shape (num_rois, 4) "
|
|
"given as [(x1, y1, x2, y2), ...]. "
|
|
"where (x1, y1) is the top left coordinates, and "
|
|
"(x2, y2) is the bottom right coordinates. "
|
|
"The roi batch index can be calculated from LoD.");
|
|
AddOutput("Out",
|
|
"Tensor, "
|
|
"the output of PSROIPoolOp is a 4-D Tensor with shape "
|
|
"(num_rois, output_channels, pooled_h, pooled_w). "
|
|
"The data type is the same as `x` ");
|
|
AddAttr<int>(
|
|
"output_channels",
|
|
"(int), "
|
|
"the number of channels of the output feature map. "
|
|
"For a task of C classes of objects, output_channels should be "
|
|
"(C + 1) for classification only.");
|
|
AddAttr<float>("spatial_scale",
|
|
"(float, default 1.0), "
|
|
"Multiplicative spatial scale factor "
|
|
"to translate ROI coords from their input scale "
|
|
"to the scale used when pooling.")
|
|
.SetDefault(1.0);
|
|
AddAttr<int>("pooled_height",
|
|
"(int, default 1), "
|
|
"the pooled output height.")
|
|
.SetDefault(1);
|
|
AddAttr<int>("pooled_width",
|
|
"(int, default 1), "
|
|
"the pooled output width.")
|
|
.SetDefault(1);
|
|
AddComment(R"Doc(
|
|
**PSROIPool Operator,** `rois` **of this op should be a LoDTensor**
|
|
|
|
Position sensitive region of interest pooling (also known as PSROIPooling) is to perform
|
|
position-sensitive average pooling on regions of interest specified by input, takes as
|
|
input N position-sensitive score maps and a list of num_rois regions of interest.
|
|
|
|
PSROIPooling for R-FCN. Please refer to https://arxiv.org/abs/1605.06409 for more details.
|
|
)Doc");
|
|
}
|
|
};
|
|
|
|
class PSROIPoolOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of PSROIPoolOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("ROIs"),
|
|
"Input(ROIs) of PSROIPoolOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of PSROIPoolOp should not be null.");
|
|
auto input_dims = ctx->GetInputDim("X");
|
|
auto rois_dims = ctx->GetInputDim("ROIs");
|
|
|
|
PADDLE_ENFORCE(input_dims.size() == 4,
|
|
"The format of input tensor is NCHW");
|
|
PADDLE_ENFORCE(rois_dims.size() == 2,
|
|
"ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
|
|
"given as [(x1, y1, x2, y2), ...]");
|
|
PADDLE_ENFORCE(rois_dims[1] == 4,
|
|
"ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
|
|
"given as [(x1, y1, x2, y2), ...]");
|
|
|
|
int pooled_height = ctx->Attrs().Get<int>("pooled_height");
|
|
int pooled_width = ctx->Attrs().Get<int>("pooled_width");
|
|
int output_channels = ctx->Attrs().Get<int>("output_channels");
|
|
float spatial_scale = ctx->Attrs().Get<float>("spatial_scale");
|
|
|
|
PADDLE_ENFORCE(
|
|
input_dims[1] == output_channels * pooled_height * pooled_width,
|
|
"the channel of X(%d) should be equal to the product of "
|
|
"output_channels(%d), pooled_height(%d) and pooled_width(%d)",
|
|
input_dims[1], output_channels, pooled_height, pooled_width);
|
|
|
|
PADDLE_ENFORCE_GT(pooled_height, 0,
|
|
"The pooled output height must be greater than 0");
|
|
PADDLE_ENFORCE_GT(pooled_width, 0,
|
|
"The pooled output width must be greater than 0");
|
|
PADDLE_ENFORCE_GT(output_channels, 1,
|
|
"The pooled output channels must greater than 1");
|
|
PADDLE_ENFORCE_GT(spatial_scale, 0.0f,
|
|
"The spatial scale must greater than 0.");
|
|
|
|
auto out_dims = input_dims;
|
|
out_dims[0] = rois_dims[0];
|
|
out_dims[1] =
|
|
output_channels; // input_dims[1] / (pooled_height * pooled_width);
|
|
out_dims[2] = pooled_height;
|
|
out_dims[3] = pooled_width;
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class PSROIPoolGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"The gradient of Out should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
|
|
"The gradient of X should not be null.");
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class PSROIPoolGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<T> Apply() const override {
|
|
std::unique_ptr<T> op(new T());
|
|
op->SetType("psroi_pool_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("ROIs", this->Input("ROIs"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetAttrMap(this->Attrs());
|
|
return op;
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(psroi_pool, ops::PSROIPoolOp, ops::PSROIPoolOpMaker,
|
|
ops::PSROIPoolGradMaker<paddle::framework::OpDesc>,
|
|
ops::PSROIPoolGradMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(psroi_pool_grad, ops::PSROIPoolGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
psroi_pool,
|
|
ops::CPUPSROIPoolOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::CPUPSROIPoolOpKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
psroi_pool_grad,
|
|
ops::CPUPSROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::CPUPSROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, double>);
|