You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/layer.py

356 lines
11 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.
The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.
```python
def network_config():
img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
inference = paddle.trainer_config_helpers.fc_layer(
input=img,
size=10,
act=paddle.trainer_config_helpers.SoftmaxActivation())
cost = paddle.trainer_config_helpers.classification_cost(
input=inference,
label=paddle.trainer_config_helpers.data_layer(name="label", size=10))
proto_desc = parse_network_config(network_config)
```
When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.
The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:
```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
input=inference,
label=paddle.v2.layer.data(name="label", size=10))
parameters = paddle.v2.parameters.create(cost)
```
This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.
Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
import collections
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
from paddle.trainer_config_helpers.default_decorators import wrap_bias_attr_default
from paddle.trainer_config_helpers.layers import layer_support
import data_type
import activation
import attr
__all__ = [
'parse_network',
'data',
'fc',
'max_id',
'classification_cost',
'cross_entropy_cost',
'cross_entropy_with_selfnorm_cost',
'regression_cost',
'multi_binary_label_cross_entropy_cost',
'rank_cost',
'lambda_cost',
'sum_cost',
'huber_cost'
'full_matrix_projection',
'trans_full_matrix_projection',
'table_projection',
'identity_projection',
'scaling_projection',
'dotmul_projection',
'context_projection',
'conv_projection',
]
__projection_names__ = filter(lambda x: x.endswith('_projection'),
dir(conf_helps))
__all__ += __projection_names__
__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__
def parse_network(*outputs):
"""
parse all output layers and then generate a model config proto.
:param outputs:
:return:
"""
def __real_func__():
context = dict()
real_output = [each.to_proto(context=context) for each in outputs]
conf_helps.outputs(real_output)
return __parse__(__real_func__)
class Layer(object):
def __init__(self, name=None, parent_layers=None):
assert isinstance(parent_layers, dict)
self.name = name
self.__parent_layers__ = parent_layers
def to_proto(self, context):
"""
function to set proto attribute
"""
kwargs = dict()
for layer_name in self.__parent_layers__:
if not isinstance(self.__parent_layers__[layer_name],
collections.Sequence):
v1_layer = self.__parent_layers__[layer_name].to_proto(
context=context)
else:
v1_layer = map(lambda x: x.to_proto(context=context),
self.__parent_layers__[layer_name])
kwargs[layer_name] = v1_layer
if self.name is None:
return self.to_proto_impl(**kwargs)
if self.name not in context:
context[self.name] = self.to_proto_impl(**kwargs)
return context[self.name]
def to_proto_impl(self, **kwargs):
raise NotImplementedError()
def __convert_to_v2__(method_name, name_prefix=None, parent_names=None):
if name_prefix is not None:
wrapper = wrap_name_default(name_prefix=name_prefix)
else:
wrapper = None
class V2LayerImpl(Layer):
def __init__(self, name=None, **kwargs):
parent_layers = dict()
other_kwargs = dict()
for pname in parent_names:
if kwargs.has_key(pname):
parent_layers[pname] = kwargs[pname]
for key in kwargs.keys():
if key not in parent_names:
other_kwargs[key] = kwargs[key]
super(V2LayerImpl, self).__init__(name, parent_layers)
self.__other_kwargs__ = other_kwargs
if wrapper is not None:
__init__ = wrapper(__init__)
def to_proto_impl(self, **kwargs):
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__other_kwargs__:
args[each] = self.__other_kwargs__[each]
return getattr(conf_helps, method_name)(**args)
return V2LayerImpl
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""
class DataLayerV2(Layer):
def __init__(self, name, type, **kwargs):
assert isinstance(type, data_type.InputType)
self.type = type
self.__method_name__ = 'data_layer'
self.__kwargs__ = kwargs
super(DataLayerV2, self).__init__(name=name, parent_layers=dict())
def to_proto_impl(self, **kwargs):
args = dict()
args['size'] = self.type.dim
for each in kwargs:
args[each] = kwargs[each]
for each in self.__kwargs__:
args[each] = self.__kwargs__[each]
return getattr(conf_helps, self.__method_name__)(name=self.name, **args)
class MixedLayerV2(Layer):
"""
This class is use to support `with` grammar. If not, the following code
could convert mixed_layer simply.
mixed = __convert_to_v2__(
'mixed_layer', name_prefix='mixed', parent_names=['input'])
"""
class AddToSealedMixedLayerExceptionV2(Exception):
pass
def __init__(self,
size=0,
input=None,
name=None,
act=None,
bias_attr=None,
layer_attr=None):
self.__method_name__ = 'mixed_layer'
self.finalized = False
self.__parent_layers__ = dict()
other_kwargs = dict()
self.input_name = 'input'
self.__parent_layers__[self.input_name] = []
if input is not None:
self.__parent_layers__[self.input_name] = input
self.name = name
other_kwargs['size'] = size
other_kwargs['act'] = act
other_kwargs['bias_attr'] = bias_attr
other_kwargs['layer_attr'] = layer_attr
Layer.__init__(self, name, self.__parent_layers__)
self.__other_kwargs__ = other_kwargs
def __iadd__(self, other):
if not self.finalized:
self.__parent_layers__[self.input_name].append(other)
return self
else:
raise MixedLayerTypeV2.AddToSealedMixedLayerExceptionV2()
def __enter__(self):
assert len(self.__parent_layers__[self.input_name]) == 0
return self
def __exit__(self, *args, **kwargs):
self.finalized = True
def to_proto_impl(self, **kwargs):
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__other_kwargs__:
args[each] = self.__other_kwargs__[each]
return getattr(conf_helps, self.__method_name__)(name=self.name, **args)
@wrap_name_default("mixed")
@wrap_act_default(act=activation.Linear())
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
name=None,
input=None,
act=None,
bias_attr=False,
layer_attr=None):
return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)
data = DataLayerV2
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
'maxid_layer', name_prefix='maxid', parent_names=['input'])
classification_cost = __convert_to_v2__(
'classification_cost',
name_prefix='classification_cost',
parent_names=['input', 'label', 'weight'])
regression_cost = __convert_to_v2__(
'regression_cost',
name_prefix='regression_cost',
parent_names=['input', 'label', 'weight'])
cross_entropy_cost = __convert_to_v2__(
'cross_entropy',
name_prefix='cross_entropy',
parent_names=['input', 'label'])
cross_entropy_with_selfnorm_cost = __convert_to_v2__(
'cross_entropy_with_selfnorm',
name_prefix='cross_entropy_with_selfnorm',
parent_names=['input', 'label'])
multi_binary_label_cross_entropy_cost = __convert_to_v2__(
'multi_binary_label_cross_entropy',
name_prefix='multi_binary_label_cross_entropy',
parent_names=['input', 'label'])
rank_cost = __convert_to_v2__(
'rank_cost',
name_prefix='rank_cost',
parent_names=['left', 'right', 'label', 'weight'])
lambda_cost = __convert_to_v2__(
'lambda_cost', name_prefix='lambda_cost', parent_names=['input', 'score'])
sum_cost = __convert_to_v2__(
'sum_cost', name_prefix='sum_cost', parent_names=['input'])
huber_cost = __convert_to_v2__(
'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label'])
# convert projection
projection_list = [
# [V1_method_name], all the parent_names is `input`
'full_matrix_projection',
'trans_full_matrix_projection',
'table_projection',
'scaling_projection',
'dotmul_projection',
'context_projection',
'conv_projection',
'identity_projection',
]
for prj in projection_list:
globals()[prj] = __convert_to_v2__(prj, parent_names=['input'])
# convert operator
operator_list = [
# [V1_method_name, parent_names],
['dotmul_operator', ['a', 'b']],
['conv_operator', ['img', 'filter']]
]
for op in operator_list:
globals()[op[0]] = __convert_to_v2__(op[0], parent_names=op[1])