You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/fluid/tests/test_elementwise_div_op.py

106 lines
3.2 KiB

import unittest
import numpy as np
from op_test import OpTest
class ElementwiseDivOp(OpTest):
def setUp(self):
self.op_type = "elementwise_div"
""" Warning
CPU gradient check error!
'X': np.random.random((32,84)).astype("float32"),
'Y': np.random.random((32,84)).astype("float32")
"""
self.inputs = {
'X': np.random.uniform(0.1, 1, [13, 17]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float32")
}
self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.05)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.05, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y'))
class TestElementwiseDivOp_Vector(ElementwiseDivOp):
def setUp(self):
self.op_type = "elementwise_div"
self.inputs = {
'X': np.random.uniform(0.1, 1, [32]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [32]).astype("float32")
}
self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}
class TestElementwiseDivOp_broadcast_0(ElementwiseDivOp):
def setUp(self):
self.op_type = "elementwise_div"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [2]).astype("float32")
}
self.attrs = {'axis': 0}
self.outputs = {
'Out':
np.divide(self.inputs['X'], self.inputs['Y'].reshape(2, 1, 1))
}
class TestElementwiseDivOp_broadcast_1(ElementwiseDivOp):
def setUp(self):
self.op_type = "elementwise_div"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [3]).astype("float32")
}
self.attrs = {'axis': 1}
self.outputs = {
'Out':
np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 1))
}
class TestElementwiseDivOp_broadcast_2(ElementwiseDivOp):
def setUp(self):
self.op_type = "elementwise_div"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [4]).astype("float32")
}
self.outputs = {
'Out':
np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 4))
}
class TestElementwiseDivOp_broadcast_3(ElementwiseDivOp):
def setUp(self):
self.op_type = "elementwise_div"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [3, 4]).astype("float32")
}
self.attrs = {'axis': 1}
self.outputs = {
'Out':
np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 4, 1))
}
if __name__ == '__main__':
unittest.main()