You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
74 lines
2.4 KiB
74 lines
2.4 KiB
import unittest
|
|
|
|
import numpy as np
|
|
import paddle.v2.fluid.core as core
|
|
|
|
import paddle.v2.fluid.executor as executor
|
|
import paddle.v2.fluid.layers as layers
|
|
import paddle.v2.fluid.optimizer as optimizer
|
|
from paddle.v2.fluid.framework import Program, program_guard
|
|
from paddle.v2.fluid.io import save_inference_model, load_inference_model
|
|
|
|
|
|
class TestBook(unittest.TestCase):
|
|
def test_fit_line_inference_model(self):
|
|
MODEL_DIR = "./tmp/inference_model"
|
|
|
|
init_program = Program()
|
|
program = Program()
|
|
|
|
with program_guard(program, init_program):
|
|
x = layers.data(name='x', shape=[2], dtype='float32')
|
|
y = layers.data(name='y', shape=[1], dtype='float32')
|
|
|
|
y_predict = layers.fc(input=x, size=1, act=None)
|
|
|
|
cost = layers.square_error_cost(input=y_predict, label=y)
|
|
avg_cost = layers.mean(x=cost)
|
|
|
|
sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
|
|
sgd_optimizer.minimize(avg_cost, init_program)
|
|
|
|
place = core.CPUPlace()
|
|
exe = executor.Executor(place)
|
|
|
|
exe.run(init_program, feed={}, fetch_list=[])
|
|
|
|
for i in xrange(100):
|
|
tensor_x = np.array(
|
|
[[1, 1], [1, 2], [3, 4], [5, 2]]).astype("float32")
|
|
tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")
|
|
|
|
exe.run(program,
|
|
feed={'x': tensor_x,
|
|
'y': tensor_y},
|
|
fetch_list=[avg_cost])
|
|
|
|
save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
|
|
expected = exe.run(program,
|
|
feed={'x': tensor_x,
|
|
'y': tensor_y},
|
|
fetch_list=[avg_cost])[0]
|
|
|
|
reload(executor) # reload to build a new scope
|
|
exe = executor.Executor(place)
|
|
|
|
[infer_prog, feed_var_names, fetch_vars] = load_inference_model(
|
|
MODEL_DIR, exe)
|
|
|
|
outs = exe.run(
|
|
infer_prog,
|
|
feed={feed_var_names[0]: tensor_x,
|
|
feed_var_names[1]: tensor_y},
|
|
fetch_list=fetch_vars)
|
|
actual = outs[0]
|
|
|
|
self.assertEqual(feed_var_names, ["x", "y"])
|
|
self.assertEqual(len(fetch_vars), 1)
|
|
self.assertEqual(str(fetch_vars[0]), str(avg_cost))
|
|
self.assertEqual(expected, actual)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|