You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
6.3 KiB
174 lines
6.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "FunctionTest.h"
|
|
#include "paddle/math/Matrix.h"
|
|
#include "paddle/testing/TestUtil.h"
|
|
|
|
using namespace paddle; // NOLINT
|
|
|
|
void testMatrixProjectionForward(int context_start,
|
|
size_t context_length,
|
|
bool is_padding,
|
|
size_t batch_size,
|
|
size_t input_dim) {
|
|
size_t pad = std::max(0, -context_start) +
|
|
std::max(0, (int)(context_start + context_length - 1));
|
|
if (pad == 0) is_padding = false;
|
|
|
|
FunctionCompare compare("ContextProjectionForward",
|
|
FuncConfig()
|
|
.set("context_length", context_length)
|
|
.set("context_start", context_start)
|
|
.set("begin_pad", std::max(0, -context_start)));
|
|
|
|
CpuMatrix cpu_in(batch_size, input_dim);
|
|
cpu_in.randomizeUniform();
|
|
GpuMatrix gpu_in(batch_size, input_dim);
|
|
gpu_in.copyFrom(cpu_in);
|
|
auto cpu_weight =
|
|
is_padding ? std::make_shared<CpuMatrix>(pad, input_dim) : nullptr;
|
|
auto gpu_weight =
|
|
is_padding ? std::make_shared<GpuMatrix>(pad, input_dim) : nullptr;
|
|
if (is_padding) {
|
|
cpu_weight->randomizeUniform();
|
|
gpu_weight->copyFrom(*cpu_weight);
|
|
}
|
|
IVectorPtr cpu_seq;
|
|
generateSequenceStartPositions(batch_size, cpu_seq);
|
|
IVectorPtr gpu_seq = IVector::create(cpu_seq->getSize(), true);
|
|
gpu_seq->copyFrom(*cpu_seq);
|
|
|
|
CpuMatrix cpu_out(batch_size, input_dim * context_length);
|
|
GpuMatrix gpu_out(batch_size, input_dim * context_length);
|
|
cpu_out.randomizeUniform();
|
|
gpu_out.copyFrom(cpu_out);
|
|
|
|
BufferArgs cpu_inputs;
|
|
BufferArgs cpu_outputs;
|
|
cpu_inputs.addArg(cpu_in, *cpu_seq);
|
|
if (cpu_weight) {
|
|
cpu_inputs.addArg(*cpu_weight, *cpu_seq);
|
|
}
|
|
cpu_outputs.addArg(cpu_out, *cpu_seq, ADD_TO);
|
|
|
|
compare.getCpuFunction()->calc(cpu_inputs, cpu_outputs);
|
|
|
|
BufferArgs gpu_inputs;
|
|
BufferArgs gpu_outputs;
|
|
gpu_inputs.addArg(gpu_in, *gpu_seq);
|
|
if (gpu_weight) {
|
|
gpu_inputs.addArg(*gpu_weight, *gpu_seq);
|
|
}
|
|
gpu_outputs.addArg(gpu_out, *gpu_seq, ADD_TO);
|
|
|
|
compare.getGpuFunction()->calc(gpu_inputs, gpu_outputs);
|
|
|
|
autotest::TensorCheckEqual(cpu_out, gpu_out);
|
|
}
|
|
|
|
void testMatrixProjectionBackward(int context_start,
|
|
int context_length,
|
|
bool is_padding,
|
|
size_t batch_size,
|
|
size_t input_dim) {
|
|
size_t pad = std::max(0, -context_start) +
|
|
std::max(0, (int)(context_start + context_length - 1));
|
|
if (pad == 0) is_padding = false;
|
|
|
|
FunctionCompare compare("ContextProjectionBackward",
|
|
FuncConfig()
|
|
.set("context_length", context_length)
|
|
.set("context_start", context_start)
|
|
.set("begin_pad", std::max(0, -context_start))
|
|
.set("is_padding", is_padding)
|
|
.set("total_pad", pad));
|
|
|
|
CpuMatrix cpu_in_grad(batch_size, input_dim);
|
|
cpu_in_grad.randomizeUniform();
|
|
GpuMatrix gpu_in_grad(batch_size, input_dim);
|
|
gpu_in_grad.copyFrom(cpu_in_grad);
|
|
|
|
CpuMatrix cpu_out_grad(batch_size, input_dim * context_length);
|
|
cpu_out_grad.randomizeUniform();
|
|
GpuMatrix gpu_out_grad(batch_size, input_dim * context_length);
|
|
gpu_out_grad.copyFrom(cpu_out_grad);
|
|
|
|
IVectorPtr cpu_seq;
|
|
generateSequenceStartPositions(batch_size, cpu_seq);
|
|
IVectorPtr gpu_seq = IVector::create(cpu_seq->getSize(), true);
|
|
gpu_seq->copyFrom(*cpu_seq);
|
|
|
|
auto cpu_w_grad =
|
|
is_padding ? std::make_shared<CpuMatrix>(pad, input_dim) : nullptr;
|
|
auto gpu_w_grad =
|
|
is_padding ? std::make_shared<GpuMatrix>(pad, input_dim) : nullptr;
|
|
if (is_padding) {
|
|
cpu_w_grad->randomizeUniform();
|
|
gpu_w_grad->copyFrom(*cpu_w_grad);
|
|
}
|
|
|
|
BufferArgs cpu_inputs;
|
|
BufferArgs cpu_outputs;
|
|
cpu_inputs.addArg(cpu_out_grad, *cpu_seq);
|
|
cpu_outputs.addArg(cpu_in_grad, *cpu_seq, ADD_TO);
|
|
cpu_outputs.addArg(
|
|
cpu_w_grad ? *cpu_w_grad : CpuMatrix(nullptr, 0, input_dim), ADD_TO);
|
|
|
|
compare.getCpuFunction()->calc(cpu_inputs, cpu_outputs);
|
|
|
|
BufferArgs gpu_inputs;
|
|
BufferArgs gpu_outputs;
|
|
gpu_inputs.addArg(gpu_out_grad, *gpu_seq);
|
|
gpu_outputs.addArg(gpu_in_grad, *gpu_seq, ADD_TO);
|
|
gpu_outputs.addArg(
|
|
gpu_w_grad ? *gpu_w_grad : GpuMatrix(nullptr, 0, input_dim), ADD_TO);
|
|
|
|
compare.getGpuFunction()->calc(gpu_inputs, gpu_outputs);
|
|
|
|
autotest::TensorCheckErr(cpu_in_grad, gpu_in_grad);
|
|
if (is_padding) {
|
|
autotest::TensorCheckErr(*cpu_w_grad, *gpu_w_grad);
|
|
}
|
|
}
|
|
|
|
TEST(ContextProjection, projection) {
|
|
for (auto context_start : {-5, -3, -1, 0, 3}) {
|
|
for (auto context_length : {1, 2, 5, 7}) {
|
|
for (auto trainable_padding : {false, true}) {
|
|
for (auto batch_size : {1, 2, 5, 20, 100}) {
|
|
for (auto input_dim : {15, 32, 63, 128, 200}) {
|
|
VLOG(3) << " context_start=" << context_start
|
|
<< " context_length=" << context_length
|
|
<< " trainable_padding=" << trainable_padding
|
|
<< " batch_size=" << batch_size
|
|
<< " input_dim=" << input_dim;
|
|
testMatrixProjectionForward(context_start,
|
|
context_length,
|
|
trainable_padding,
|
|
batch_size,
|
|
input_dim);
|
|
testMatrixProjectionBackward(context_start,
|
|
context_length,
|
|
trainable_padding,
|
|
batch_size,
|
|
input_dim);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|