You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							165 lines
						
					
					
						
							4.7 KiB
						
					
					
				
			
		
		
	
	
							165 lines
						
					
					
						
							4.7 KiB
						
					
					
				//  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
syntax = "proto2";
 | 
						|
 | 
						|
option optimize_for = LITE_RUNTIME;
 | 
						|
 | 
						|
package paddle;
 | 
						|
 | 
						|
message SGDConfig {
 | 
						|
  // SGD
 | 
						|
  // momentum: float >= 0. Parameter updates momentum.
 | 
						|
  // decay: float >= 0. Learning rate decay over each update.
 | 
						|
  // nesterov: boolean. Whether to apply Nesterov momentum.
 | 
						|
  optional double momentum = 21 [ default = 0.0 ];
 | 
						|
  optional double decay = 23 [ default = 0.0 ];
 | 
						|
  optional bool nesterov = 24 [ default = false ];
 | 
						|
}
 | 
						|
 | 
						|
message AdadeltaConfig {
 | 
						|
  // Adadelta
 | 
						|
  // It is recommended to leave it at the default value.
 | 
						|
  // rho: float >= 0.
 | 
						|
  // epsilon: float >= 0. Fuzz factor.
 | 
						|
  // decay: float >= 0. Learning rate decay over each update.
 | 
						|
 | 
						|
  // reference : [Adadelta - an adaptive learning rate
 | 
						|
  // method](http://arxiv.org/abs/1212.5701)
 | 
						|
  optional double rho = 33 [ default = 0.90 ];
 | 
						|
  optional double epsilon = 31 [ default = 1e-5 ];
 | 
						|
  optional double decay = 32 [ default = 0.0 ];
 | 
						|
}
 | 
						|
 | 
						|
message AdagradConfig {
 | 
						|
  // Adagrad
 | 
						|
  // epsilon: float >= 0.
 | 
						|
  // decay: float >= 0. Learning rate decay over each update.
 | 
						|
 | 
						|
  // reference : [Adaptive Subgradient Methods for Online Learning and
 | 
						|
  // Stochastic
 | 
						|
  // Optimization](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
 | 
						|
  optional double epsilon = 41 [ default = 1e-5 ];
 | 
						|
  optional double decay = 42 [ default = 0.0 ];
 | 
						|
}
 | 
						|
 | 
						|
message AdamConfig {
 | 
						|
  // Adaj
 | 
						|
  // beta_1: float, 0 < beta < 1. Generally close to 1.
 | 
						|
  // beta_2: float, 0 < beta < 1. Generally close to 1.
 | 
						|
  // epsilon: float >= 0. Fuzz factor.
 | 
						|
  // decay: float >= 0. Learning rate decay over each update.
 | 
						|
  // reference : [Adam - A Method for Stochastic
 | 
						|
  // Optimization](http://arxiv.org/abs/1412.6980v8)
 | 
						|
  optional double beta_1 = 41;
 | 
						|
  optional double beta_2 = 42;
 | 
						|
  optional double epsilon = 43;
 | 
						|
  optional double decay = 44;
 | 
						|
}
 | 
						|
 | 
						|
message ConstLrConfig {
 | 
						|
  // learninRate Policy
 | 
						|
  optional double learning_rate = 1 [ default = 1.0 ];
 | 
						|
}
 | 
						|
 | 
						|
message LinearLrConfig {
 | 
						|
  // learninRate Policy
 | 
						|
  optional double learning_rate = 1 [ default = 1.0 ];
 | 
						|
  optional double lr_decay_a = 2;
 | 
						|
  optional double lr_decay_b = 3;
 | 
						|
}
 | 
						|
 | 
						|
message TensorProto {
 | 
						|
  enum DataType {
 | 
						|
    PADDLE_ELEMENT_TYPE_INT32 = 0;
 | 
						|
    PADDLE_ELEMENT_TYPE_UINT32 = 1;
 | 
						|
    PADDLE_ELEMENT_TYPE_INT64 = 2;
 | 
						|
    PADDLE_ELEMENT_TYPE_UINT64 = 3;
 | 
						|
    PADDLE_ELEMENT_TYPE_FLOAT32 = 4;
 | 
						|
    PADDLE_ELEMENT_TYPE_FLOAT64 = 5;
 | 
						|
  }
 | 
						|
  optional DataType data_type = 1;
 | 
						|
  repeated bytes content = 2;
 | 
						|
}
 | 
						|
 | 
						|
message LrPolicyState {
 | 
						|
  // learninRate Policy
 | 
						|
  optional double learning_rate = 1 [ default = 1.0 ];
 | 
						|
  optional double lr_decay_a = 2;
 | 
						|
  optional double lr_decay_b = 3;
 | 
						|
}
 | 
						|
 | 
						|
message SGDOptimizerState {
 | 
						|
  optional LrPolicyState lr_state = 101;
 | 
						|
  optional double num_sample_passed = 104;
 | 
						|
  // state
 | 
						|
  optional TensorProto parameter = 1;
 | 
						|
  optional TensorProto momentums = 2;
 | 
						|
}
 | 
						|
 | 
						|
message AdadeltaOptimizerState {
 | 
						|
  // learning rate policy
 | 
						|
  optional LrPolicyState lr_state = 101;
 | 
						|
  optional double num_sample_passed = 104;
 | 
						|
  // state
 | 
						|
  optional TensorProto parameter = 1;
 | 
						|
  optional TensorProto accum_gradient = 2;
 | 
						|
  optional TensorProto accum_delta = 3;
 | 
						|
  optional TensorProto update_delta = 4;
 | 
						|
}
 | 
						|
 | 
						|
message AdagradOptimizerState {
 | 
						|
  optional LrPolicyState lr_state = 101;
 | 
						|
  optional double num_sample_passed = 104;
 | 
						|
  // state
 | 
						|
  optional TensorProto parameter = 1;
 | 
						|
  optional TensorProto accum_gradient = 2;
 | 
						|
}
 | 
						|
 | 
						|
message AdamOptimizerState {
 | 
						|
  optional LrPolicyState lr_state = 101;
 | 
						|
  optional double num_sample_passed = 104;
 | 
						|
  // state
 | 
						|
  optional TensorProto parameter = 1;
 | 
						|
  optional TensorProto momentums = 2;
 | 
						|
  optional TensorProto velocitys = 3;
 | 
						|
}
 | 
						|
 | 
						|
message OptimizerConfig {
 | 
						|
  enum Optimizer {
 | 
						|
    SGD = 1;
 | 
						|
    Adadelta = 2;
 | 
						|
    Adagrad = 3;
 | 
						|
    Adam = 4;
 | 
						|
  }
 | 
						|
  optional Optimizer optimizer = 1;
 | 
						|
  optional SGDConfig sgd = 3;
 | 
						|
  optional AdadeltaConfig adadelta = 4;
 | 
						|
  optional AdagradConfig adagrad = 5;
 | 
						|
  optional AdamConfig adam = 6;
 | 
						|
 | 
						|
  enum LrPolicy {
 | 
						|
    Const = 0;
 | 
						|
    Linear = 1;
 | 
						|
  }
 | 
						|
  optional LrPolicy lr_policy = 11;
 | 
						|
  optional ConstLrConfig const_lr = 12;
 | 
						|
  optional LinearLrConfig linear_lr = 13;
 | 
						|
 | 
						|
  // common config of optimizer
 | 
						|
  // gradient clip when L2 exceeding value
 | 
						|
  optional double clip_norm = 101;
 | 
						|
  // gradient clip when L1 exceeding value
 | 
						|
  optional double clip_value = 102;
 | 
						|
}
 |