You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/heterxpu_trainer.cc

470 lines
18 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cstdlib>
#include <ctime>
#include <string>
#include <vector>
#include "io/fs.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/data_set.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
#include "paddle/fluid/framework/trainer.h"
#if (defined PADDLE_WITH_CUDA) && (defined PADDLE_WITH_PSLIB)
#include "paddle/fluid/platform/cuda_device_guard.h"
namespace paddle {
namespace framework {
void HeterXpuTrainer::Initialize(const TrainerDesc& trainer_desc,
Dataset* dataset) {
srand((unsigned)time(NULL));
param_ = trainer_desc.downpour_param();
for (int i = 0; i < param_.dense_table_size(); ++i) {
uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
auto table = param_.dense_table(i);
dense_grad_names_[table_id].resize(table.dense_grad_name_size());
for (int j = 0; j < table.dense_grad_name_size(); ++j) {
dense_grad_names_[table_id][j] = table.dense_grad_name(j);
}
}
scale_datanorm_ = trainer_desc.scale_datanorm();
int place_num = trainer_desc.worker_places_size();
for (int i = 0; i < place_num; ++i) {
int num = trainer_desc.worker_places(i);
platform::CUDAPlace place = platform::CUDAPlace(num);
platform::CUDADeviceGuard guard(place.device);
cudaStream_t stream;
PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamCreate(&stream));
copy_streams_.push_back(stream);
places_.push_back(place);
cudaEvent_t event;
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
events_.push_back(event);
}
// thread_num_ = trainer_desc.thread_num();
// SetDataset(dataset);
// dump_fields_path_ = trainer_desc.dump_fields_path();
// dump_converter_ = trainer_desc.dump_converter();
// need_dump_field_ = false;
// if (trainer_desc.dump_fields_size() != 0 && dump_fields_path_ != "") {
// need_dump_field_ = true;
// }
// if (need_dump_field_) {
// auto &file_list = dataset->GetFileList();
// if (file_list.size() == 0) {
// need_dump_field_ = false;
// }
// }
// mpi_rank_ = trainer_desc.mpi_rank();
// mpi_size_ = trainer_desc.mpi_size();
// dump_file_num_ = trainer_desc.dump_file_num();
// const std::vector<paddle::framework::DataFeed *> readers =
// dataset->GetReaders();
// thread_num_ = readers.size();
for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
i++) {
need_merge_var_names_.push_back(
trainer_desc.downpour_param().stat_var_names(i));
}
running_ = true;
VLOG(3) << "going to initialize pull dense worker";
pull_dense_worker_ = PullDenseWorker::GetInstance();
pull_dense_worker_->Initialize(trainer_desc);
VLOG(3) << "initialize pull dense worker";
SetDebug(trainer_desc.debug());
fleet_ptr_ = FleetWrapper::GetInstance();
heter_ptr_ = HeterWrapper::GetInstance();
RegisterServiceHandler();
// for (int i = 0; i < trainer_desc.worker_places_size(); ++i) {
// int num = trainer_desc.worker_places(i);
// platform::CUDAPlace place = platform::CUDAPlace(num);
// platform::CUDADeviceGuard guard(place.device);
// cudaStream_t stream;
// PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamCreate(&stream));
// copy_streams_.push_back(stream);
// places_.push_back(place);
// }
trainer_desc_ = trainer_desc;
}
void HeterXpuTrainer::CreateThreadParam(const ProgramDesc& program, int num) {
auto place = places_[num];
Scope* scope = place_scopes_[num];
auto stream = copy_streams_[num];
auto event = events_[num];
auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
platform::CUDADeviceGuard guard(dev_id);
auto& block = program.Block(0);
for (auto& var : block.AllVars()) {
if (var->Persistable()) {
auto name = var->Name();
Variable* root_var = root_scope_->FindVar(name);
LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
auto* ptr = scope->Var(name);
InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();
#define HeterMemcpyFunc(cpp_type, proto_type) \
do { \
if (root_tensor->type() == proto_type) { \
HeterMemCpy<cpp_type>(thread_tensor, root_tensor, place, stream); \
} \
} while (0)
_ForEachDataType_(HeterMemcpyFunc);
}
}
PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(event, stream));
cudaEventSynchronize(event);
}
template <typename T>
void HeterXpuTrainer::HeterMemCpy(LoDTensor* thread_tensor,
LoDTensor* root_tensor,
const paddle::platform::Place& thread_place,
cudaStream_t stream) {
T* thread_ptr =
thread_tensor->mutable_data<T>(root_tensor->dims(), thread_place);
T* root_ptr = root_tensor->data<T>();
if (platform::is_cpu_place(root_tensor->place())) {
memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, thread_place), thread_ptr,
platform::CPUPlace(), root_ptr,
sizeof(T) * root_tensor->numel(), stream);
} else {
memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, thread_place), thread_ptr,
BOOST_GET_CONST(platform::CUDAPlace, root_tensor->place()),
root_ptr, sizeof(T) * root_tensor->numel(), stream);
}
}
void HeterXpuTrainer::DumpWork(int tid) {}
void HeterXpuTrainer::InitTrainerEnv(const ProgramDesc& main_program,
const platform::Place& place) {
CacheProgram(main_program);
place_ = place;
auto& profiler = paddle::ps::CostProfiler::instance();
profiler.register_profiler("xpu_service_run_task");
profiler.register_profiler("xpu_service_deserial");
profiler.register_profiler("xpu_service_launch_kernel");
profiler.register_profiler("xpu_service_wait");
}
void HeterXpuTrainer::InitOtherEnv(const ProgramDesc& main_program) {
auto& block = main_program.Block(0);
pull_dense_worker_->SetRootScope(root_scope_);
pull_dense_worker_->CreatePinVar();
for (size_t i = 0; i < places_.size(); ++i) {
Scope* scope = &(root_scope_->NewScope());
// for (auto &var : block.AllVars()) {
// if (var->Persistable()) {
// auto *ptr = scope->Var(var->Name());
// InitializeVariable(ptr, var->GetType());
// }
// }
place_scopes_.push_back(scope);
CreateThreadParam(main_program, i);
pull_dense_worker_->AddThreadScope(scope);
pull_dense_worker_->AddPlace(places_[i]);
pull_dense_worker_->AddStream(copy_streams_[i]);
}
pull_dense_worker_->Start();
for (auto& stream : copy_streams_) {
cudaStreamSynchronize(stream);
}
op_names_.clear();
for (auto& op_desc : block.AllOps()) {
std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
op_names_.push_back(op_desc->Type());
OperatorBase* local_op_ptr = local_op.release();
ops_.push_back(local_op_ptr);
continue;
}
xpu_begin_op_index_ = xpu_end_op_index_ = -1;
xpu_begin_op_index_ = trainer_desc_.xpu_start_idx();
xpu_end_op_index_ = trainer_desc_.xpu_end_idx();
VLOG(0) << "xpu begin: " << xpu_begin_op_index_
<< " xpu end: " << xpu_end_op_index_;
// CHECK(xpu_begin_op_index_ == 0);
// CHECK(xpu_end_op_index_ = ops_.size() - 1);
//// init pool
for (size_t i = 0; i < 6; ++i) {
for (size_t j = 0; j < places_.size(); ++j) {
int num = j;
std::shared_ptr<HeterServiceContext> context =
std::make_shared<HeterServiceContext>();
context->place_num_ = num;
auto place = places_[num];
context->scope_ = &(place_scopes_[num]->NewScope());
auto& block = program_.Block(0);
for (auto& var : block.AllVars()) {
if (!var->Persistable()) {
auto* ptr = context->scope_->Var(var->Name());
InitializeVariable(ptr, var->GetType());
}
}
for (auto& v : dense_grad_names_) {
for (auto& name : v.second) {
auto* ptr = context->scope_->Var(name + "pin");
InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
}
}
for (auto& op_desc : block.AllOps()) {
std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
OperatorBase* local_op_ptr = local_op.release();
(context->ops_).push_back(local_op_ptr);
}
auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
platform::CUDADeviceGuard guard(dev_id);
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaEventCreateWithFlags(&context->event_, cudaEventDisableTiming));
object_pool_.Push(context);
}
}
VLOG(3) << "init other env done.";
}
void HeterXpuTrainer::Run() {}
int HeterXpuTrainer::EndPass(const HeterRequest* request,
HeterResponse* response) {
// int scope_num = object_pool_.Size();
for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
if (root_var == nullptr) {
continue;
}
LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
for (size_t j = 0; j < place_scopes_.size(); j++) {
Scope* cur_thread_scope = place_scopes_[j];
Variable* thread_var =
cur_thread_scope->FindVar(need_merge_var_names_[i]);
if (thread_var == nullptr) {
continue;
}
LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
// if (root_tensor->numel() != thread_tensor->numel()) {
// continue;
// }
#define MergeCallback(cpp_type, proto_type) \
do { \
if (root_tensor->type() == proto_type) { \
if (thread_tensor->type() != proto_type) { \
VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
<< "] " << need_merge_var_names_[i] \
<< ", root tensor type=" << root_tensor->type() \
<< ", thread tensor type=" << thread_tensor->type(); \
exit(-1); \
} \
MergeToRootScope<cpp_type>(root_tensor, thread_tensor); \
} \
} while (0)
_ForEachDataType_(MergeCallback);
if (platform::is_gpu_place(thread_tensor->place())) {
auto dev_id =
BOOST_GET_CONST(platform::CUDAPlace, thread_tensor->place()).device;
platform::CUDADeviceGuard guard(dev_id);
cudaMemset(thread_tensor->data<void>(), 0,
thread_tensor->numel() * SizeOfType(thread_tensor->type()));
} else {
memset(thread_tensor->data<void>(), 0,
thread_tensor->numel() * SizeOfType(thread_tensor->type()));
}
}
auto* merge_var = response->add_vars();
heter_ptr_->SerializeToReq(need_merge_var_names_[i], root_scope_,
merge_var);
if (platform::is_gpu_place(root_tensor->place())) {
auto dev_id =
BOOST_GET_CONST(platform::CUDAPlace, root_tensor->place()).device;
platform::CUDADeviceGuard guard(dev_id);
cudaMemset(root_tensor->data<void>(), 0,
root_tensor->numel() * SizeOfType(root_tensor->type()));
} else {
memset(root_tensor->data<void>(), 0,
root_tensor->numel() * SizeOfType(root_tensor->type()));
}
}
return 0;
}
template <typename T>
void HeterXpuTrainer::MergeToRootScope(LoDTensor* root_tensor,
LoDTensor* tensor) {
LoDTensor tmp_root;
TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root);
T* tmp_root_data = tmp_root.data<T>();
LoDTensor tmp_tensor;
TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor);
T* data = tmp_tensor.data<T>();
for (int i = 0; i < tmp_tensor.numel(); i++) {
tmp_root_data[i] += data[i];
}
TensorCopy(tmp_root, root_tensor->place(), root_tensor);
}
int HeterXpuTrainer::StopService(const HeterRequest* request,
HeterResponse* response) {
std::unique_lock<std::mutex> lock(mutex_);
running_ = false;
cond_.notify_one();
return 0;
}
int HeterXpuTrainer::RunTask(const HeterRequest* request,
HeterResponse* response) {
auto timer = std::make_shared<paddle::ps::CostTimer>("xpu_service_run_task");
std::shared_ptr<HeterServiceContext> context = object_pool_.Get();
if (!context->scope_) {
int num = rand() % places_.size();
context->place_num_ = num;
auto place = places_[num];
context->scope_ = &(place_scopes_[num]->NewScope());
auto& block = program_.Block(0);
for (auto& var : block.AllVars()) {
if (!var->Persistable()) {
auto* ptr = context->scope_->Var(var->Name());
InitializeVariable(ptr, var->GetType());
}
}
for (auto& v : dense_grad_names_) {
for (auto& name : v.second) {
auto* ptr = context->scope_->Var(name + "pin");
InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
}
}
for (auto& op_desc : block.AllOps()) {
std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
OperatorBase* local_op_ptr = local_op.release();
(context->ops_).push_back(local_op_ptr);
}
auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
platform::CUDADeviceGuard guard(dev_id);
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaEventCreateWithFlags(&context->event_, cudaEventDisableTiming));
}
context->Reset();
auto place = places_[context->place_num_];
{
auto deserial_timer =
std::make_shared<paddle::ps::CostTimer>("xpu_service_deserial");
for (int i = 0; i < request->vars_size(); ++i) {
heter_ptr_->DeSerializeToTensor(context->scope_, request->vars(i), place,
copy_streams_[context->place_num_]);
}
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaEventRecord(context->event_, copy_streams_[context->place_num_]));
while (cudaEventQuery(context->event_) != cudaSuccess) {
VLOG(3) << "wait for kernel";
bthread_yield();
}
}
{
auto launch_timer =
std::make_shared<paddle::ps::CostTimer>("xpu_service_launch_kernel");
for (int i = xpu_begin_op_index_; i <= xpu_end_op_index_; ++i) {
auto& op = (context->ops_)[i];
op->Run(*(context->scope_), place);
}
}
auto* dev_ctx = static_cast<platform::CUDADeviceContext*>(
platform::DeviceContextPool::Instance().Get(place));
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaEventRecord(context->event_, dev_ctx->stream()));
// cudaEventSynchronize(context->event_);
{
auto wait_timer =
std::make_shared<paddle::ps::CostTimer>("xpu_service_wait");
while (cudaEventQuery(context->event_) != cudaSuccess) {
VLOG(3) << "wait for kernel";
bthread_yield();
}
}
for (int i = 0; i < trainer_desc_.xpu_send_list_size(); ++i) {
const std::string& varname = trainer_desc_.xpu_send_list(i);
// CHECK(varname == "concat_1.tmp_0@GRAD");
auto* res_var = response->add_vars();
heter_ptr_->SerializeToReq(varname, context->scope_, res_var);
}
// std::string varname = "concat_1.tmp_0@GRAD";
//
// auto* res_var = response->add_vars();
// heter_ptr_->SerializeToReq(varname, context->scope_, res_var);
for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
++i) {
uint64_t tid =
static_cast<uint64_t>(param_.program_config(0).push_dense_table_id(i));
fleet_ptr_->PushDenseVarsAsync(
*(context->scope_), tid, dense_grad_names_[tid],
&(context->push_dense_status_), scale_datanorm_, request->cur_batch(),
places_[context->place_num_], copy_streams_[context->place_num_],
context->event_);
}
for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
++i) {
uint64_t tid =
static_cast<uint64_t>(param_.program_config(0).push_dense_table_id(i));
pull_dense_worker_->IncreaseThreadVersion(0, tid);
}
VLOG(3) << "push dense gradient done.";
context->scope_->DropKids();
object_pool_.Push(context);
VLOG(0) << "pool size " << object_pool_.Size();
return 0;
}
void HeterXpuTrainer::RegisterServiceHandler() {
heter_ptr_->RegisterServiceHandler(
0, [this](const HeterRequest* request, HeterResponse* response) -> int {
return this->RunTask(request, response);
});
heter_ptr_->RegisterServiceHandler(
1, [this](const HeterRequest* request, HeterResponse* response) -> int {
return this->EndPass(request, response);
});
heter_ptr_->RegisterServiceHandler(
2, [this](const HeterRequest* request, HeterResponse* response) -> int {
return this->StopService(request, response);
});
}
Scope* HeterXpuTrainer::GetWorkerScope(int thread_id) { return nullptr; }
void HeterXpuTrainer::Finalize() {
// for (auto &th : threads_) {
// th.join();
// }
std::unique_lock<std::mutex> lock(mutex_);
cond_.wait(lock, [this] { return !running_; });
sleep(3);
pull_dense_worker_->Stop();
root_scope_->DropKids();
}
} // namespace framework
} // namespace paddle
#endif