You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
3.7 KiB
97 lines
3.7 KiB
# copyright (c) 2019 paddlepaddle authors. all rights reserved.
|
|
#
|
|
# licensed under the apache license, version 2.0 (the "license");
|
|
# you may not use this file except in compliance with the license.
|
|
# you may obtain a copy of the license at
|
|
#
|
|
# http://www.apache.org/licenses/license-2.0
|
|
#
|
|
# unless required by applicable law or agreed to in writing, software
|
|
# distributed under the license is distributed on an "as is" basis,
|
|
# without warranties or conditions of any kind, either express or implied.
|
|
# see the license for the specific language governing permissions and
|
|
# limitations under the license.
|
|
|
|
import paddle
|
|
import unittest
|
|
import paddle.fluid as fluid
|
|
from mobilenet import MobileNet
|
|
from paddle.fluid.contrib.slim.core import Compressor
|
|
from paddle.fluid.contrib.slim.graph import GraphWrapper
|
|
|
|
|
|
class TestDistillationStrategy(unittest.TestCase):
|
|
"""
|
|
Test API of distillation strategy.
|
|
"""
|
|
|
|
def test_compression(self):
|
|
if not fluid.core.is_compiled_with_cuda():
|
|
return
|
|
class_dim = 10
|
|
image_shape = [1, 28, 28]
|
|
image = fluid.layers.data(
|
|
name='image', shape=image_shape, dtype='float32')
|
|
image.stop_gradient = False
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
out = MobileNet(name="student").net(input=image, class_dim=class_dim)
|
|
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
|
|
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
|
|
val_program = fluid.default_main_program().clone(for_test=False)
|
|
|
|
cost = fluid.layers.cross_entropy(input=out, label=label)
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
optimizer = fluid.optimizer.Momentum(
|
|
momentum=0.9,
|
|
learning_rate=fluid.layers.piecewise_decay(
|
|
boundaries=[5, 10], values=[0.01, 0.001, 0.0001]),
|
|
regularization=fluid.regularizer.L2Decay(4e-5))
|
|
|
|
place = fluid.CUDAPlace(0)
|
|
exe = fluid.Executor(place)
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
val_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128)
|
|
|
|
val_feed_list = [('img', image.name), ('label', label.name)]
|
|
val_fetch_list = [('acc_top1', acc_top1.name), ('acc_top5',
|
|
acc_top5.name)]
|
|
|
|
train_reader = paddle.batch(
|
|
paddle.dataset.mnist.train(), batch_size=128)
|
|
train_feed_list = [('img', image.name), ('label', label.name)]
|
|
train_fetch_list = [('loss', avg_cost.name)]
|
|
|
|
# define teacher program
|
|
teacher_program = fluid.Program()
|
|
startup_program = fluid.Program()
|
|
with fluid.program_guard(teacher_program, startup_program):
|
|
img = teacher_program.global_block()._clone_variable(
|
|
image, force_persistable=False)
|
|
predict = MobileNet(name="teacher").net(input=img,
|
|
class_dim=class_dim)
|
|
|
|
exe.run(startup_program)
|
|
|
|
com_pass = Compressor(
|
|
place,
|
|
fluid.global_scope(),
|
|
fluid.default_main_program(),
|
|
train_reader=train_reader,
|
|
train_feed_list=train_feed_list,
|
|
train_fetch_list=train_fetch_list,
|
|
eval_program=val_program,
|
|
eval_reader=val_reader,
|
|
eval_feed_list=val_feed_list,
|
|
eval_fetch_list=val_fetch_list,
|
|
teacher_programs=[teacher_program.clone(for_test=True)],
|
|
train_optimizer=optimizer,
|
|
distiller_optimizer=optimizer)
|
|
com_pass.config('./distillation/compress.yaml')
|
|
eval_graph = com_pass.run()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|