You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
145 lines
5.2 KiB
145 lines
5.2 KiB
# copyright (c) 2019 paddlepaddle authors. all rights reserved.
|
|
#
|
|
# licensed under the apache license, version 2.0 (the "license");
|
|
# you may not use this file except in compliance with the license.
|
|
# you may obtain a copy of the license at
|
|
#
|
|
# http://www.apache.org/licenses/license-2.0
|
|
#
|
|
# unless required by applicable law or agreed to in writing, software
|
|
# distributed under the license is distributed on an "as is" basis,
|
|
# without warranties or conditions of any kind, either express or implied.
|
|
# see the license for the specific language governing permissions and
|
|
# limitations under the license.
|
|
|
|
from __future__ import print_function
|
|
import unittest
|
|
import paddle.fluid as fluid
|
|
import six
|
|
import numpy as np
|
|
from paddle.fluid.contrib.slim.graph import GraphWrapper
|
|
from paddle.fluid import core
|
|
|
|
|
|
def residual_block(num):
|
|
def conv_bn_layer(input,
|
|
ch_out,
|
|
filter_size,
|
|
stride,
|
|
padding,
|
|
act='relu',
|
|
bias_attr=False):
|
|
tmp = fluid.layers.conv2d(
|
|
input=input,
|
|
filter_size=filter_size,
|
|
num_filters=ch_out,
|
|
stride=stride,
|
|
padding=padding,
|
|
act=None,
|
|
bias_attr=bias_attr)
|
|
return fluid.layers.batch_norm(input=tmp, act=act)
|
|
|
|
data = fluid.layers.data(name='image', shape=[1, 8, 8], dtype='float32')
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
data.stop_gradinet = False
|
|
hidden = data
|
|
for _ in six.moves.xrange(num):
|
|
conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True)
|
|
short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None)
|
|
hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu')
|
|
fc = fluid.layers.fc(input=hidden, size=10)
|
|
|
|
loss = fluid.layers.cross_entropy(input=fc, label=label)
|
|
loss = fluid.layers.mean(loss)
|
|
return data, label, loss
|
|
|
|
|
|
class TestGraphWrapper(unittest.TestCase):
|
|
def build_program(self):
|
|
place = fluid.CPUPlace()
|
|
if fluid.core.is_compiled_with_cuda():
|
|
place = fluid.CUDAPlace(0)
|
|
main = fluid.Program()
|
|
startup = fluid.Program()
|
|
with fluid.program_guard(main, startup):
|
|
image, label, self.loss = residual_block(2)
|
|
eval_program = main.clone()
|
|
opt = fluid.optimizer.SGD(learning_rate=0.001)
|
|
opt.minimize(self.loss)
|
|
self.scope = core.Scope()
|
|
exe = fluid.Executor(place)
|
|
exe.run(startup, scope=self.scope)
|
|
self.eval_graph = GraphWrapper(
|
|
program=eval_program,
|
|
in_nodes={'image': image.name,
|
|
'label': label.name},
|
|
out_nodes={'loss': self.loss.name})
|
|
self.train_graph = GraphWrapper(
|
|
program=main,
|
|
in_nodes={'image': image.name,
|
|
'label': label.name},
|
|
out_nodes={'loss': self.loss.name})
|
|
|
|
def test_all_parameters(self):
|
|
self.build_program()
|
|
self.assertEquals(len(self.train_graph.all_parameters()), 24)
|
|
|
|
def test_all_vars(self):
|
|
self.build_program()
|
|
# self.assertEquals(len(self.train_graph.vars()), 90)
|
|
# activation inplace has been disabled in python side
|
|
# which may produce more variable in program_desc
|
|
# update 90 => 94
|
|
self.assertEquals(len(self.train_graph.vars()), 94)
|
|
|
|
def test_numel_params(self):
|
|
self.build_program()
|
|
self.assertEquals(self.train_graph.numel_params(), 13258)
|
|
|
|
def test_compile(self):
|
|
self.build_program()
|
|
place = fluid.CPUPlace()
|
|
if fluid.core.is_compiled_with_cuda():
|
|
place = fluid.CUDAPlace(0)
|
|
exe = fluid.Executor(place)
|
|
self.train_graph.compile()
|
|
exe.run(self.train_graph.compiled_graph,
|
|
scope=self.scope,
|
|
feed={
|
|
'image':
|
|
np.random.randint(0, 40, [16, 1, 8, 8]).astype('float32'),
|
|
'label': np.random.randint(0, 10, [16, 1]).astype('int64')
|
|
})
|
|
|
|
def test_pre_and_next_ops(self):
|
|
self.build_program()
|
|
for op in self.train_graph.ops():
|
|
for next_op in self.train_graph.next_ops(op):
|
|
self.assertTrue(op in self.train_graph.pre_ops(next_op))
|
|
|
|
def test_get_optimize_graph(self):
|
|
self.build_program()
|
|
place = fluid.CPUPlace()
|
|
if fluid.core.is_compiled_with_cuda():
|
|
place = fluid.CUDAPlace(0)
|
|
opt = fluid.optimizer.SGD(learning_rate=0.001)
|
|
train_graph = self.eval_graph.get_optimize_graph(
|
|
opt, place, self.scope, no_grad_var_names=['image'])
|
|
self.assertEquals(len(self.train_graph.ops()), len(train_graph.ops()))
|
|
exe = fluid.Executor(place)
|
|
train_graph.compile()
|
|
image = np.random.randint(0, 225, [16, 1, 8, 8]).astype('float32')
|
|
label = np.random.randint(0, 10, [16, 1]).astype('int64')
|
|
exe.run(train_graph.compiled_graph,
|
|
scope=self.scope,
|
|
feed={'image': image,
|
|
'label': label})
|
|
|
|
def test_flops(self):
|
|
self.build_program()
|
|
self.assertEquals(self.train_graph.flops(), 354624)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|