You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
164 lines
6.4 KiB
164 lines
6.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/lookup_table_op.h"
|
|
#include "paddle/fluid/framework/var_type_inference.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class LookupTableOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("W"),
|
|
"Input(W) of LookupTableOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Ids"),
|
|
"Input(Ids) of LookupTableOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of LookupTableOp should not be null.");
|
|
|
|
auto table_dims = ctx->GetInputDim("W");
|
|
auto ids_dims = ctx->GetInputDim("Ids");
|
|
|
|
auto ids_var_type = ctx->GetInputsVarType("Ids").front();
|
|
// The type of Ids(Input) is SelectedRows or LoDTensor, when Ids's type
|
|
// is LoDTensor, this tensor contains the ids to be looked up in W
|
|
// and it must be a column vector with rank = 2 while the 2nd dimension
|
|
// size must be 1, when Ids's type is SelectedRows, the rows of Ids
|
|
// contains the ids to be looked up in W;
|
|
if (ids_var_type == framework::proto::VarType::LOD_TENSOR) {
|
|
PADDLE_ENFORCE_EQ(ids_dims.size(), 2);
|
|
PADDLE_ENFORCE_EQ(ids_dims[1], 1);
|
|
}
|
|
|
|
ctx->SetOutputDim("Out", {ids_dims[0], table_dims[1]});
|
|
ctx->ShareLoD("Ids", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
|
|
return framework::OpKernelType(data_type, ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
LookupTableOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("W",
|
|
"(Tensor) The input represents embedding tensors, "
|
|
"which is a learnable parameter.");
|
|
AddInput(
|
|
"Ids",
|
|
"(Tensor or SelectedRows) Ids's type can be Tensor or "
|
|
"SelectedRows, when Ids's type is Tensor, this tensor contains "
|
|
"the ids to be looked up in W and it must be a column vector with "
|
|
"rank = 2 while the 2nd dimension size must be 1; when Ids's type is "
|
|
"SelectedRows, the rows of Ids contains the ids to be looked up "
|
|
"in W.");
|
|
AddOutput("Out",
|
|
"(Tensor or SelectedRows) The lookup results, which have the "
|
|
"same type as W.");
|
|
AddAttr<bool>("is_sparse",
|
|
"(boolean, default false) "
|
|
"Sparse update.")
|
|
.SetDefault(false);
|
|
AddAttr<int64_t>("padding_idx",
|
|
"(int64, default -1) "
|
|
"If the value is -1, it makes no effect to lookup. "
|
|
"Otherwise the given value indicates padding the output "
|
|
"with zeros whenever lookup encounters it in Ids.")
|
|
.SetDefault(kNoPadding);
|
|
AddComment(R"DOC(
|
|
Lookup Table Operator.
|
|
|
|
This operator is used to perform lookups on the parameter W,
|
|
then concatenated into a dense or sparse tensor.
|
|
|
|
The type of Ids(Input) is SelectedRows, Tensor or LoDTensor, when Ids's
|
|
type is SelectedRows, the rows of Ids contains the ids to be looked up in W;
|
|
when Ids's type is Tensor, this tensor contains the ids to be looked up in W
|
|
and it must be a column vector with rank = 2 while the 2nd dimension size must be 1,
|
|
at this time, Ids can carry the LoD (Level of Details) information, or not, and
|
|
the output only shares the LoD information with input Ids.
|
|
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class LookupTableOpGradDescMaker
|
|
: public framework::DefaultGradOpDescMaker<true> {
|
|
using ::paddle::framework::DefaultGradOpDescMaker<
|
|
true>::DefaultGradOpDescMaker;
|
|
|
|
protected:
|
|
virtual std::string GradOpType() const { return "lookup_table_grad"; }
|
|
};
|
|
|
|
class LookupTableOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
auto table_dims = ctx->GetInputDim("W");
|
|
ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
|
|
return framework::OpKernelType(data_type, ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
|
|
public:
|
|
void operator()(const framework::OpDesc& op_desc,
|
|
framework::BlockDesc* block) const override {
|
|
auto out_var_name = op_desc.Output(framework::GradVarName("W")).front();
|
|
auto attr = op_desc.GetAttr("is_sparse");
|
|
bool is_sparse = boost::get<bool>(attr);
|
|
if (is_sparse) {
|
|
VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
|
|
<< " is set to SelectedRows";
|
|
block->Var(out_var_name)
|
|
->SetType(framework::proto::VarType::SELECTED_ROWS);
|
|
} else {
|
|
VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
|
|
<< " is set to LoDTensor";
|
|
block->Var(out_var_name)->SetType(framework::proto::VarType::LOD_TENSOR);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp,
|
|
ops::LookupTableOpGradDescMaker, ops::LookupTableOpMaker);
|
|
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
|
|
ops::LookupTableOpGradVarTypeInference);
|
|
|
|
REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
|
|
ops::LookupTableKernel<double>);
|
|
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
|
|
ops::LookupTableGradKernel<double>);
|