You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							76 lines
						
					
					
						
							2.5 KiB
						
					
					
				
			
		
		
	
	
							76 lines
						
					
					
						
							2.5 KiB
						
					
					
				| #edit-mode: -*- python -*-
 | |
| # Copyright (c) 2016 Baidu, Inc. All Rights Reserved
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from paddle.trainer_config_helpers import *
 | |
| 
 | |
| ######################## data source ################################
 | |
| define_py_data_sources2(train_list='gserver/tests/Sequence/dummy.list',
 | |
|                         test_list=None,
 | |
|                         module='rnn_data_provider',
 | |
|                         obj='process_unequalength_seq')
 | |
| 
 | |
| 
 | |
| settings(batch_size=2, learning_rate=0.01)
 | |
| ######################## network configure ################################
 | |
| dict_dim = 10
 | |
| word_dim = 8
 | |
| hidden_dim = 8
 | |
| label_dim = 2
 | |
| 
 | |
| speaker1 = data_layer(name="word1", size=dict_dim)
 | |
| speaker2 = data_layer(name="word2", size=dict_dim)
 | |
| 
 | |
| emb1 = embedding_layer(input=speaker1, size=word_dim)
 | |
| emb2 = embedding_layer(input=speaker2, size=word_dim)
 | |
| 
 | |
| # This hierachical RNN is designed to be equivalent to the RNN in
 | |
| # sequence_nest_rnn_multi_unequalength_inputs.conf
 | |
| 
 | |
| def step(x1, x2):
 | |
| 	def calrnn(y):
 | |
| 		mem = memory(name = 'rnn_state_' + y.name, size = hidden_dim)
 | |
| 		out = fc_layer(input = [y, mem],
 | |
| 					   size = hidden_dim,
 | |
| 					   act = TanhActivation(),
 | |
| 					   bias_attr = True,
 | |
| 					   name = 'rnn_state_' + y.name)
 | |
| 		return out
 | |
| 	
 | |
| 	encoder1 = calrnn(x1)
 | |
| 	encoder2 = calrnn(x2)
 | |
| 	return [encoder1, encoder2]
 | |
| 
 | |
| encoder1_rep, encoder2_rep = recurrent_group(
 | |
|     name="stepout",
 | |
|     step=step,
 | |
|     input=[emb1, emb2])
 | |
| 
 | |
| encoder1_last = last_seq(input = encoder1_rep)
 | |
| encoder1_expandlast = expand_layer(input = encoder1_last,
 | |
|                                    expand_as = encoder2_rep)
 | |
| context = mixed_layer(input = [identity_projection(encoder1_expandlast),
 | |
|                                identity_projection(encoder2_rep)],
 | |
|                       size = hidden_dim)
 | |
| 
 | |
| rep = last_seq(input=context)
 | |
| prob = fc_layer(size=label_dim,
 | |
|                 input=rep,
 | |
|                 act=SoftmaxActivation(),
 | |
|                 bias_attr=True)
 | |
| 
 | |
| outputs(classification_cost(input=prob,
 | |
|                             label=data_layer(name="label", size=label_dim)))
 | |
| 
 |