You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/hapi/callbacks.py

1115 lines
39 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import numbers
import warnings
import numpy as np
import paddle
from paddle.distributed import ParallelEnv
from paddle.utils import try_import
from .progressbar import ProgressBar
__all__ = [
'Callback', 'ProgBarLogger', 'ModelCheckpoint', 'VisualDL', 'LRScheduler',
'EarlyStopping', 'ReduceLROnPlateau'
]
def config_callbacks(callbacks=None,
model=None,
batch_size=None,
epochs=None,
steps=None,
log_freq=2,
verbose=2,
save_freq=1,
save_dir=None,
metrics=None,
mode='train'):
cbks = callbacks or []
cbks = cbks if isinstance(cbks, (list, tuple)) else [cbks]
if not any(isinstance(k, ProgBarLogger) for k in cbks) and verbose:
cbks = [ProgBarLogger(log_freq, verbose=verbose)] + cbks
if not any(isinstance(k, ModelCheckpoint) for k in cbks):
cbks = cbks + [ModelCheckpoint(save_freq, save_dir)]
for k in cbks:
if isinstance(k, EarlyStopping):
k.save_dir = save_dir
if not any(isinstance(k, LRScheduler) for k in cbks):
cbks = cbks + [LRScheduler()]
cbk_list = CallbackList(cbks)
cbk_list.set_model(model)
metrics = metrics or [] if mode != 'test' else []
params = {
'batch_size': batch_size,
'epochs': epochs,
'steps': steps,
'verbose': verbose,
'metrics': metrics,
}
cbk_list.set_params(params)
return cbk_list
class CallbackList(object):
def __init__(self, callbacks=None):
# copy
self.callbacks = [c for c in callbacks]
self.params = {}
self.model = None
def append(self, callback):
self.callbacks.append(callback)
def __iter__(self):
return iter(self.callbacks)
def set_params(self, params):
for c in self.callbacks:
c.set_params(params)
def set_model(self, model):
for c in self.callbacks:
c.set_model(model)
def _call(self, name, *args):
for c in self.callbacks:
func = getattr(c, name)
func(*args)
def _check_mode(self, mode):
assert mode in ['train', 'eval', 'predict'], \
'mode should be train, eval or predict'
def on_begin(self, mode, logs=None):
self._check_mode(mode)
name = 'on_{}_begin'.format(mode)
self._call(name, logs)
def on_end(self, mode, logs=None):
self._check_mode(mode)
name = 'on_{}_end'.format(mode)
self._call(name, logs)
def on_epoch_begin(self, epoch=None, logs=None):
self._call('on_epoch_begin', epoch, logs)
def on_epoch_end(self, epoch=None, logs=None):
self._call('on_epoch_end', epoch, logs)
def on_batch_begin(self, mode, step=None, logs=None):
self._check_mode(mode)
name = 'on_{}_batch_begin'.format(mode)
self._call(name, step, logs)
def on_batch_end(self, mode, step=None, logs=None):
self._check_mode(mode)
name = 'on_{}_batch_end'.format(mode)
self._call(name, step, logs)
class Callback(object):
"""
Base class used to build new callbacks.
Examples:
.. code-block:: python
import paddle
# build a simple model checkpoint callback
class ModelCheckpoint(paddle.callbacks.Callback):
def __init__(self, save_freq=1, save_dir=None):
self.save_freq = save_freq
self.save_dir = save_dir
def on_epoch_end(self, epoch, logs=None):
if self.model is not None and epoch % self.save_freq == 0:
path = '{}/{}'.format(self.save_dir, epoch)
print('save checkpoint at {}'.format(path))
self.model.save(path)
"""
def __init__(self):
self.model = None
self.params = {}
def set_params(self, params):
"""
Set parameters, which is dict. The keys contain:
- 'batch_size': an integer. Number of samples per batch.
- 'epochs': an integer. Number of epochs.
- 'steps': an integer. Number of steps of one epoch.
- 'verbose': an integer. Verbose mode is 0, 1 or 2. 0 = silent, 1 = progress bar, 2 = one line per epoch.
- 'metrics': a list of str. Names of metrics, including 'loss' and the names of paddle.metric.Metric.
"""
self.params = params
def set_model(self, model):
"""model is instance of paddle.Model.
"""
self.model = model
def on_train_begin(self, logs=None):
"""Called at the start of training.
Args:
logs (dict): The logs is a dict or None.
"""
def on_train_end(self, logs=None):
"""Called at the end of training.
Args:
logs (dict): The logs is a dict or None. The keys of logs
passed by paddle.Model contains 'loss', metric names and
`batch_size`.
"""
def on_eval_begin(self, logs=None):
"""Called at the start of evaluation.
Args:
logs (dict): The logs is a dict or None. The keys of logs
passed by paddle.Model contains 'steps' and 'metrics',
The `steps` is number of total steps of validation dataset.
The `metrics` is a list of str including 'loss' and the names
of paddle.metric.Metric.
"""
def on_eval_end(self, logs=None):
"""Called at the end of evaluation.
Args:
logs (dict): The logs is a dict or None. The `logs` passed by
paddle.Model is a dict contains 'loss', metrics and 'batch_size'
of last batch of validation dataset.
"""
def on_predict_begin(self, logs=None):
"""Called at the beginning of predict.
Args:
logs (dict): The logs is a dict or None.
"""
def on_predict_end(self, logs=None):
"""Called at the end of predict.
Args:
logs (dict): The logs is a dict or None.
"""
def on_epoch_begin(self, epoch, logs=None):
"""Called at the beginning of each epoch.
Args:
epoch (int): The index of epoch.
logs (dict): The logs is a dict or None. The `logs` passed by
paddle.Model is None.
"""
def on_epoch_end(self, epoch, logs=None):
"""Called at the end of each epoch.
Args:
epoch (int): The index of epoch.
logs (dict): The logs is a dict or None. The `logs` passed by
paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
of last batch.
"""
def on_train_batch_begin(self, step, logs=None):
"""Called at the beginning of each batch in training.
Args:
step (int): The index of step (or iteration).
logs (dict): The logs is a dict or None. The `logs` passed by
paddle.Model is empty.
"""
def on_train_batch_end(self, step, logs=None):
"""Called at the end of each batch in training.
Args:
step (int): The index of step (or iteration).
logs (dict): The logs is a dict or None. The `logs` passed by
paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
of current batch.
"""
def on_eval_batch_begin(self, step, logs=None):
"""Called at the beginning of each batch in evaluation.
Args:
step (int): The index of step (or iteration).
logs (dict): The logs is a dict or None. The `logs` passed by
paddle.Model is empty.
"""
def on_eval_batch_end(self, step, logs=None):
"""Called at the end of each batch in evaluation.
Args:
step (int): The index of step (or iteration).
logs (dict): The logs is a dict or None. The `logs` passed by
paddle.Model is a dict, contains 'loss', metrics and 'batch_size'
of current batch.
"""
def on_predict_batch_begin(self, step, logs=None):
"""Called at the beginning of each batch in predict.
Args:
step (int): The index of step (or iteration).
logs (dict): The logs is a dict or None.
"""
def on_predict_batch_end(self, step, logs=None):
"""Called at the end of each batch in predict.
Args:
step (int): The index of step (or iteration).
logs (dict): The logs is a dict or None.
"""
class ProgBarLogger(Callback):
"""
Logger callback function.
Args:
log_freq (int): The frequency, in number of steps,
the logs such as loss, metrics are printed. Default: 1.
verbose (int): The verbosity mode, should be 0, 1, or 2.
0 = silent, 1 = progress bar, 2 = one line per epoch, 3 = 2 +
time counter, such as average reader cost, samples per second.
Default: 2.
Examples:
.. code-block:: python
import paddle
import paddle.vision.transforms as T
from paddle.vision.datasets import MNIST
from paddle.static import InputSpec
inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
labels = [InputSpec([None, 1], 'int64', 'label')]
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
train_dataset = MNIST(mode='train', transform=transform)
lenet = paddle.vision.LeNet()
model = paddle.Model(lenet,
inputs, labels)
optim = paddle.optimizer.Adam(0.001, parameters=lenet.parameters())
model.prepare(optimizer=optim,
loss=paddle.nn.CrossEntropyLoss(),
metrics=paddle.metric.Accuracy())
callback = paddle.callbacks.ProgBarLogger(log_freq=10)
model.fit(train_dataset, batch_size=64, callbacks=callback)
"""
def __init__(self, log_freq=1, verbose=2):
self.epochs = None
self.steps = None
self.progbar = None
self.verbose = verbose
self.log_freq = log_freq
def _is_print(self):
return self.verbose and ParallelEnv().local_rank == 0
def on_train_begin(self, logs=None):
self.epochs = self.params['epochs']
assert self.epochs
self.train_metrics = self.params['metrics']
assert self.train_metrics
self._train_timer = {
'data_time': 0,
'batch_time': 0,
'count': 0,
'samples': 0,
}
if self._is_print():
print(
"The loss value printed in the log is the current step, and the metric is the average value of previous step."
)
def on_epoch_begin(self, epoch=None, logs=None):
self.steps = self.params['steps']
self.epoch = epoch
self.train_step = 0
if self.epochs and self._is_print():
print('Epoch %d/%d' % (epoch + 1, self.epochs))
self.train_progbar = ProgressBar(num=self.steps, verbose=self.verbose)
self._train_timer['batch_start_time'] = time.time()
def _updates(self, logs, mode):
values = []
metrics = getattr(self, '%s_metrics' % (mode))
progbar = getattr(self, '%s_progbar' % (mode))
steps = getattr(self, '%s_step' % (mode))
for k in metrics:
if k in logs:
values.append((k, logs[k]))
if self.verbose == 3 and hasattr(self, '_%s_timer' % (mode)):
timer = getattr(self, '_%s_timer' % (mode))
cnt = timer['count'] if timer['count'] > 0 else 1.0
samples = timer['samples'] if timer['samples'] > 0 else 1.0
values.append(
('avg_reader_cost', "%.5f sec" % (timer['data_time'] / cnt)))
values.append(
('avg_batch_cost', "%.5f sec" % (timer['batch_time'] / cnt)))
values.append(
('ips', "%.5f samples/sec" %
(samples / (timer['data_time'] + timer['batch_time']))))
progbar.update(steps, values)
def on_train_batch_begin(self, step, logs=None):
self._train_timer['batch_data_end_time'] = time.time()
self._train_timer['data_time'] += (
self._train_timer['batch_data_end_time'] -
self._train_timer['batch_start_time'])
def on_train_batch_end(self, step, logs=None):
logs = logs or {}
self.train_step += 1
self._train_timer['batch_time'] += (
time.time() - self._train_timer['batch_data_end_time'])
self._train_timer['count'] += 1
samples = logs.get('batch_size', 1)
self._train_timer['samples'] += samples
if self._is_print() and self.train_step % self.log_freq == 0:
if self.steps is None or self.train_step < self.steps:
self._updates(logs, 'train')
self._train_timer['batch_start_time'] = time.time()
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
if self._is_print() and (self.steps is not None):
self._updates(logs, 'train')
def on_eval_begin(self, logs=None):
self.eval_steps = logs.get('steps', None)
self.eval_metrics = logs.get('metrics', [])
self.eval_step = 0
self.evaled_samples = 0
self._eval_timer = {
'data_time': 0,
'batch_time': 0,
'count': 0,
'samples': 0,
}
self.eval_progbar = ProgressBar(
num=self.eval_steps, verbose=self.verbose)
if self._is_print():
print('Eval begin...')
self._eval_timer['batch_start_time'] = time.time()
def on_eval_batch_begin(self, step, logs=None):
self._eval_timer['batch_data_end_time'] = time.time()
self._eval_timer['data_time'] += (
self._eval_timer['batch_data_end_time'] -
self._eval_timer['batch_start_time'])
def on_eval_batch_end(self, step, logs=None):
logs = logs or {}
self.eval_step += 1
samples = logs.get('batch_size', 1)
self.evaled_samples += samples
self._eval_timer['batch_time'] += (
time.time() - self._eval_timer['batch_data_end_time'])
self._eval_timer['count'] += 1
samples = logs.get('batch_size', 1)
self._eval_timer['samples'] += samples
if self._is_print() and self.eval_step % self.log_freq == 0:
if self.eval_steps is None or self.eval_step < self.eval_steps:
self._updates(logs, 'eval')
self._eval_timer['batch_start_time'] = time.time()
def on_predict_begin(self, logs=None):
self.test_steps = logs.get('steps', None)
self.test_metrics = logs.get('metrics', [])
self.test_step = 0
self.tested_samples = 0
self._test_timer = {
'data_time': 0,
'batch_time': 0,
'count': 0,
'samples': 0,
}
self.test_progbar = ProgressBar(
num=self.test_steps, verbose=self.verbose)
if self._is_print():
print('Predict begin...')
self._test_timer['batch_start_time'] = time.time()
def on_predict_batch_begin(self, step, logs=None):
self._test_timer['batch_data_end_time'] = time.time()
self._test_timer['data_time'] += (
self._test_timer['batch_data_end_time'] -
self._test_timer['batch_start_time'])
def on_predict_batch_end(self, step, logs=None):
logs = logs or {}
self.test_step += 1
samples = logs.get('batch_size', 1)
self.tested_samples += samples
self._test_timer['batch_time'] += (
time.time() - self._test_timer['batch_data_end_time'])
self._test_timer['count'] += 1
samples = logs.get('batch_size', 1)
self._test_timer['samples'] += samples
if self.test_step % self.log_freq == 0 and self._is_print():
if self.test_steps is None or self.test_step < self.test_steps:
self._updates(logs, 'test')
self._test_timer['batch_start_time'] = time.time()
def on_eval_end(self, logs=None):
logs = logs or {}
if self._is_print() and (self.eval_steps is not None):
self._updates(logs, 'eval')
print('Eval samples: %d' % (self.evaled_samples))
def on_predict_end(self, logs=None):
logs = logs or {}
if self._is_print():
if self.test_step % self.log_freq != 0 or self.verbose == 1:
self._updates(logs, 'test')
print('Predict samples: %d' % (self.tested_samples))
class ModelCheckpoint(Callback):
"""
Model checkpoint callback function.
Args:
save_freq(int): The frequency, in number of epochs, the model checkpoint
are saved. Default: 1.
save_dir(str|None): The directory to save checkpoint during training.
If None, will not save checkpoint. Default: None.
Examples:
.. code-block:: python
import paddle
import paddle.vision.transforms as T
from paddle.vision.datasets import MNIST
from paddle.static import InputSpec
inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
labels = [InputSpec([None, 1], 'int64', 'label')]
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
train_dataset = MNIST(mode='train', transform=transform)
lenet = paddle.vision.LeNet()
model = paddle.Model(lenet,
inputs, labels)
optim = paddle.optimizer.Adam(0.001, parameters=lenet.parameters())
model.prepare(optimizer=optim,
loss=paddle.nn.CrossEntropyLoss(),
metrics=paddle.metric.Accuracy())
callback = paddle.callbacks.ModelCheckpoint(save_dir='./temp')
model.fit(train_dataset, batch_size=64, callbacks=callback)
"""
def __init__(self, save_freq=1, save_dir=None):
self.save_freq = save_freq
self.save_dir = save_dir
def on_epoch_begin(self, epoch=None, logs=None):
self.epoch = epoch
def _is_save(self):
return self.model and self.save_dir and ParallelEnv().local_rank == 0
def on_epoch_end(self, epoch, logs=None):
if self._is_save() and self.epoch % self.save_freq == 0:
path = '{}/{}'.format(self.save_dir, epoch)
print('save checkpoint at {}'.format(os.path.abspath(path)))
self.model.save(path)
def on_train_end(self, logs=None):
if self._is_save():
path = '{}/final'.format(self.save_dir)
print('save checkpoint at {}'.format(os.path.abspath(path)))
self.model.save(path)
class LRScheduler(Callback):
"""Lr scheduler callback function
Args:
by_step(bool, optional): whether to update learning rate scheduler
by step. Default: True.
by_epoch(bool, optional): whether to update learning rate scheduler
by epoch. Default: False.
Examples:
.. code-block:: python
import paddle
import paddle.vision.transforms as T
from paddle.static import InputSpec
inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
labels = [InputSpec([None, 1], 'int64', 'label')]
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
lenet = paddle.vision.LeNet()
model = paddle.Model(lenet,
inputs, labels)
base_lr = 1e-3
boundaries = [5, 8]
wamup_steps = 4
def make_optimizer(parameters=None):
momentum = 0.9
weight_decay = 5e-4
values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
learning_rate = paddle.optimizer.lr.PiecewiseDecay(
boundaries=boundaries, values=values)
learning_rate = paddle.optimizer.lr.LinearWarmup(
learning_rate=learning_rate,
warmup_steps=wamup_epochs,
start_lr=base_lr / 5.,
end_lr=base_lr,
verbose=True)
optimizer = paddle.optimizer.Momentum(
learning_rate=learning_rate,
weight_decay=weight_decay,
momentum=momentum,
parameters=parameters)
return optimizer
optim = make_optimizer(parameters=lenet.parameters())
model.prepare(optimizer=optim,
loss=paddle.nn.CrossEntropyLoss(),
metrics=paddle.metric.Accuracy())
# if LRScheduler callback not set, an instance LRScheduler update by step
# will be created auto.
model.fit(train_dataset, batch_size=64)
# create a learning rate scheduler update by epoch
callback = paddle.callbacks.LRScheduler(by_step=False, by_epoch=True)
model.fit(train_dataset, batch_size=64, callbacks=callback)
"""
def __init__(self, by_step=True, by_epoch=False):
if by_step and by_epoch:
raise ValueError(
"by_step option is mutually exclusive with by_epoch")
self.by_step = by_step
self.by_epoch = by_epoch
def on_epoch_end(self, epoch, logs=None):
if self.by_epoch:
if self.model._optimizer and \
hasattr(self.model._optimizer, '_learning_rate') and \
isinstance(self.model._optimizer._learning_rate,
paddle.optimizer.lr.LRScheduler):
self.model._optimizer._learning_rate.step()
def on_train_batch_end(self, step, logs=None):
if self.by_step:
if self.model._optimizer and \
hasattr(self.model._optimizer, '_learning_rate') and \
isinstance(self.model._optimizer._learning_rate,
paddle.optimizer.lr.LRScheduler):
self.model._optimizer._learning_rate.step()
class EarlyStopping(Callback):
"""Stop training when the given monitor stopped improving during evaluation.
Args:
monitor(str): Quantity to be monitored. Default: 'loss'.
mode(str|None): Mode should be one of 'auto', 'min' or 'max'. In 'min'
mode, training will stop until monitored quantity stops decreasing.
In 'max' mode, training will stop until monitored quantity stops
increasing. In 'auto' mode, exact mode can be inferred by the name
of monitor. If 'acc' in monitor, the mode will be considered as
'max', otherwise the mode will be set to 'min'. Default: 'auto'.
patience(int): Number of epochs with no improvement after which
training will be stopped. Default: 0.
verbose(int): The verbosity mode, should be 0 or 1. When verbose=0,
logs will not be printed. When verbose=1, logs will be printed.
Default: 1.
min_delta(int|float): The minimum change of monitored quantity. If
the change is less than min_delta, model could be considered as no
improvement. Default: 0.
baseline(int|float|None): Baseline value for the monitored quantity.
Training will stop if the model doesn't show improvement over the
baseline. Default: None.
save_best_model(bool): Whether to save best model. Default: True.
Examples:
.. code-block:: python
import paddle
from paddle import Model
from paddle.static import InputSpec
from paddle.vision.models import LeNet
from paddle.vision.datasets import MNIST
from paddle.metric import Accuracy
from paddle.nn import CrossEntropyLoss
import paddle.vision.transforms as T
device = paddle.set_device('cpu')
sample_num = 200
save_dir = './best_model_checkpoint'
transform = T.Compose(
[T.Transpose(), T.Normalize([127.5], [127.5])])
train_dataset = MNIST(mode='train', transform=transform)
val_dataset = MNIST(mode='test', transform=transform)
net = LeNet()
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=net.parameters())
inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')]
model = Model(net, inputs=inputs, labels=labels)
model.prepare(
optim,
loss=CrossEntropyLoss(reduction="sum"),
metrics=[Accuracy()])
callbacks = paddle.callbacks.EarlyStopping(
'loss',
mode='min',
patience=1,
verbose=1,
min_delta=0,
baseline=None,
save_best_model=True)
model.fit(train_dataset,
val_dataset,
batch_size=64,
log_freq=200,
save_freq=10,
save_dir=save_dir,
epochs=20,
callbacks=[callbacks])
"""
def __init__(self,
monitor='loss',
mode='auto',
patience=0,
verbose=1,
min_delta=0,
baseline=None,
save_best_model=True):
super(EarlyStopping, self).__init__()
self.monitor = monitor
self.patience = patience
self.verbose = verbose
self.baseline = baseline
self.min_delta = abs(min_delta)
self.wait_epoch = 0
self.best_weights = None
self.stopped_epoch = 0
self.save_best_model = save_best_model
# The value of `save_dir` is set in function `config_callbacks`
self.save_dir = None
if mode not in ['auto', 'min', 'max']:
warnings.warn('EarlyStopping mode %s is unknown, '
'fallback to auto mode.' % mode)
mode = 'auto'
if mode == 'min':
self.monitor_op = np.less
elif mode == 'max':
self.monitor_op = np.greater
# When mode == 'auto', the mode should be inferred by `self.monitor`
else:
if 'acc' in self.monitor:
self.monitor_op = np.greater
else:
self.monitor_op = np.less
if self.monitor_op == np.greater:
self.min_delta *= 1
else:
self.min_delta *= -1
def on_train_begin(self, logs=None):
self.wait_epoch = 0
if self.baseline is not None:
self.best_value = self.baseline
else:
self.best_value = np.inf if self.monitor_op == np.less else -np.inf
self.best_weights = None
def on_eval_end(self, logs=None):
if logs is None or self.monitor not in logs:
warnings.warn(
'Monitor of EarlyStopping should be loss or metric name.')
return
current = logs[self.monitor]
if isinstance(current, (list, tuple)):
current = current[0]
elif isinstance(current, numbers.Number):
current = current
else:
return
if self.monitor_op(current - self.min_delta, self.best_value):
self.best_value = current
self.wait_epoch = 0
if self.save_best_model and self.save_dir is not None:
path = os.path.join(self.save_dir, 'best_model')
self.model.save(path)
else:
self.wait_epoch += 1
if self.wait_epoch >= self.patience:
self.model.stop_training = True
if self.verbose > 0:
print('Epoch %d: Early stopping.' % (self.stopped_epoch + 1))
if self.save_best_model and self.save_dir is not None:
print('Best checkpoint has been saved at %s' %
(os.path.abspath(
os.path.join(self.save_dir, 'best_model'))))
self.stopped_epoch += 1
class VisualDL(Callback):
"""
VisualDL callback function.
Args:
log_dir (str): The directory to save visualdl log file.
Examples:
.. code-block:: python
import paddle
import paddle.vision.transforms as T
from paddle.static import InputSpec
inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
labels = [InputSpec([None, 1], 'int64', 'label')]
transform = T.Compose([
T.Transpose(),
T.Normalize([127.5], [127.5])
])
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
eval_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
net = paddle.vision.LeNet()
model = paddle.Model(net, inputs, labels)
optim = paddle.optimizer.Adam(0.001, parameters=net.parameters())
model.prepare(optimizer=optim,
loss=paddle.nn.CrossEntropyLoss(),
metrics=paddle.metric.Accuracy())
## uncomment following lines to fit model with visualdl callback function
# callback = paddle.callbacks.VisualDL(log_dir='visualdl_log_dir')
# model.fit(train_dataset, eval_dataset, batch_size=64, callbacks=callback)
"""
def __init__(self, log_dir):
self.log_dir = log_dir
self.epochs = None
self.steps = None
self.epoch = 0
def _is_write(self):
return ParallelEnv().local_rank == 0
def on_train_begin(self, logs=None):
self.epochs = self.params['epochs']
assert self.epochs
self.train_metrics = self.params['metrics']
assert self.train_metrics
self._is_fit = True
self.train_step = 0
def on_epoch_begin(self, epoch=None, logs=None):
self.steps = self.params['steps']
self.epoch = epoch
def _updates(self, logs, mode):
if not self._is_write():
return
if not hasattr(self, 'writer'):
visualdl = try_import('visualdl')
self.writer = visualdl.LogWriter(self.log_dir)
metrics = getattr(self, '%s_metrics' % (mode))
current_step = getattr(self, '%s_step' % (mode))
if mode == 'train':
total_step = current_step
else:
total_step = self.epoch
for k in metrics:
if k in logs:
temp_tag = mode + '/' + k
if isinstance(logs[k], (list, tuple)):
temp_value = logs[k][0]
elif isinstance(logs[k], numbers.Number):
temp_value = logs[k]
else:
continue
self.writer.add_scalar(
tag=temp_tag, step=total_step, value=temp_value)
def on_train_batch_end(self, step, logs=None):
logs = logs or {}
self.train_step += 1
if self._is_write():
self._updates(logs, 'train')
def on_eval_begin(self, logs=None):
self.eval_steps = logs.get('steps', None)
self.eval_metrics = logs.get('metrics', [])
self.eval_step = 0
self.evaled_samples = 0
def on_train_end(self, logs=None):
if hasattr(self, 'writer'):
self.writer.close()
delattr(self, 'writer')
def on_eval_end(self, logs=None):
if self._is_write():
self._updates(logs, 'eval')
if (not hasattr(self, '_is_fit')) and hasattr(self, 'writer'):
self.writer.close()
delattr(self, 'writer')
class ReduceLROnPlateau(Callback):
"""Reduce learning rate when a metric of evaluation has stopped improving.
Models often benefit from reducing the learning rate by a factor
of 2-10 once learning stagnates. This callback monitors a
quantity and if no improvement is seen for a 'patience' number
of epochs, the learning rate is reduced.
Args:
monitor(str, optional): Quantity to be monitored. Default: 'loss'.
factor(float, optional): factor by which the learning rate will be reduced.
`new_lr = lr * factor`. Default: 0.1.
patience(int, optional): Number of epochs with no improvement after which
learning rate will be reduced. Default: 10.
verbose(int, optional): The verbosity mode. 0: quiet, 1: update messages.
Default: 1.
mode(str, optional): one of `{'auto', 'min', 'max'}`. In `'min'` mode,
the learning rate will be reduced when the quantity monitored has
stopped decreasing. In 'max' mode, learning rate will reduce until
monitored quantity stops increasing. In 'auto' mode, exact mode
can be inferred by the name of monitor. If 'acc' in monitor, the
mode will be considered as 'max', otherwise the mode will be set
to 'min'. Default: 'auto'.
min_delta(int|float, optional): threshold for measuring the new optimum,
to only focus on significant changes. Default: 0.
cooldown(int, optional): number of epochs to wait before resuming normal operation after
lr has been reduced. Default: 0.
min_lr(float, optional): lower bound on the learning rate. Default: 0.
Examples:
.. code-block:: python
import paddle
from paddle import Model
from paddle.static import InputSpec
from paddle.vision.models import LeNet
from paddle.vision.datasets import MNIST
from paddle.metric import Accuracy
from paddle.nn.layer.loss import CrossEntropyLoss
import paddle.vision.transforms as T
sample_num = 200
transform = T.Compose(
[T.Transpose(), T.Normalize([127.5], [127.5])])
train_dataset = MNIST(mode='train', transform=transform)
val_dataset = MNIST(mode='test', transform=transform)
net = LeNet()
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=net.parameters())
inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')]
model = Model(net, inputs=inputs, labels=labels)
model.prepare(
optim,
loss=CrossEntropyLoss(),
metrics=[Accuracy()])
callbacks = paddle.callbacks.ReduceLROnPlateau(patience=3, verbose=1)
model.fit(train_dataset,
val_dataset,
batch_size=64,
log_freq=200,
save_freq=10,
epochs=20,
callbacks=[callbacks])
"""
def __init__(self,
monitor='loss',
factor=0.1,
patience=10,
verbose=1,
mode='auto',
min_delta=1e-4,
cooldown=0,
min_lr=0):
super(ReduceLROnPlateau, self).__init__()
self.monitor = monitor
if factor >= 1.0:
raise ValueError('ReduceLROnPlateau '
'does not support a factor >= 1.0.')
self.factor = factor
self.min_lr = min_lr
self.min_delta = min_delta
self.patience = patience
self.verbose = verbose
self.cooldown = cooldown
self.cooldown_counter = 0 # Cooldown counter.
self.wait = 0
self.best = 0
self.mode = mode
self.monitor_op = None
self.epoch = 0
self._reset()
def _reset(self):
"""Resets wait counter and cooldown counter.
"""
if self.mode not in ['auto', 'min', 'max']:
warnings.warn('Learning rate reduction mode %s is unknown, '
'fallback to auto mode.' % self.mode)
self.mode = 'auto'
if (self.mode == 'min' or
(self.mode == 'auto' and 'acc' not in self.monitor)):
self.monitor_op = lambda a, b: np.less(a, b - self.min_delta)
self.best = np.Inf
else:
self.monitor_op = lambda a, b: np.greater(a, b + self.min_delta)
self.best = -np.Inf
self.cooldown_counter = 0
self.wait = 0
def on_train_begin(self, logs=None):
self._reset()
def on_eval_end(self, logs=None):
if logs is None or self.monitor not in logs:
warnings.warn(
'Monitor of ReduceLROnPlateau should be loss or metric name.')
return
else:
try:
lr = self.model._optimizer._learning_rate
if not isinstance(lr, float):
warnings.warn(
'Expected learning_rate be float, bug got {}.'.format(
type(lr)))
return
except Exception as e:
warnings.warn(
'There are something wrong when get learning_rate from optimizer: {}.'.
format(e))
return
current = logs[self.monitor]
if isinstance(current, (list, tuple)):
current = current[0]
elif isinstance(current, numbers.Number):
current = current
else:
return
if self.in_cooldown():
self.cooldown_counter -= 1
self.wait = 0
if self.monitor_op(current, self.best):
self.best = current
self.wait = 0
elif not self.in_cooldown():
self.wait += 1
if self.wait >= self.patience:
old_lr = self.model._optimizer.get_lr()
if old_lr > np.float32(self.min_lr):
new_lr = old_lr * self.factor
new_lr = max(new_lr, self.min_lr)
self.model._optimizer._learning_rate = new_lr
if self.verbose > 0 and ParallelEnv().local_rank == 0:
print('\nEpoch %d: ReduceLROnPlateau reducing learning '
'rate to %s.' % (self.epoch + 1, new_lr))
self.cooldown_counter = self.cooldown
self.wait = 0
self.epoch += 1
def in_cooldown(self):
return self.cooldown_counter > 0