You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
147 lines
4.8 KiB
147 lines
4.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "CropLayer.h"
|
|
#include "paddle/utils/Stat.h"
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(crop, CropLayer);
|
|
|
|
bool CropLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
/* Initialize the basic parent class */
|
|
Layer::init(layerMap, parameterMap);
|
|
CHECK_LE(static_cast<int>(inputLayers_.size()), 2);
|
|
CHECK_GE(static_cast<int>(inputLayers_.size()), 1);
|
|
crop_axis_ = config_.axis();
|
|
for (int i = 0; i < config_.offset_size(); i++) {
|
|
crop_offsets_.push_back(config_.offset(i));
|
|
}
|
|
|
|
// 1. get input_0 shape
|
|
auto& input0_img_conf = config_.inputs(0).image_conf();
|
|
inDims_ = TensorShape({0,
|
|
input0_img_conf.channels(),
|
|
input0_img_conf.has_img_size_y()
|
|
? input0_img_conf.img_size_y()
|
|
: input0_img_conf.img_size(),
|
|
input0_img_conf.img_size()});
|
|
// 2. get target dims from config
|
|
if (config_.inputs_size() == 1) {
|
|
targetDims_ = TensorShape({config_.shape(0),
|
|
config_.shape(1),
|
|
config_.shape(2),
|
|
config_.shape(3)});
|
|
} else {
|
|
// 2. get input_1 shape
|
|
auto& input1_img_conf = config_.inputs(1).image_conf();
|
|
targetDims_ = TensorShape({0,
|
|
input1_img_conf.channels(),
|
|
input1_img_conf.has_img_size_y()
|
|
? input1_img_conf.img_size_y()
|
|
: input1_img_conf.img_size(),
|
|
input1_img_conf.img_size()});
|
|
}
|
|
|
|
// 3. get final crop corner
|
|
int dimSize = 4;
|
|
crop_corner_ = {0, 0, 0, 0};
|
|
for (int i = 0; i < dimSize; i++) {
|
|
if (i >= crop_axis_) {
|
|
if (crop_offsets_.size() > 1) {
|
|
crop_corner_[i] = crop_offsets_[i - crop_axis_];
|
|
} else {
|
|
crop_corner_[i] = crop_offsets_[0];
|
|
}
|
|
}
|
|
}
|
|
|
|
outDims_ = TensorShape(4);
|
|
|
|
createFunction(
|
|
forward_, "Crop", FuncConfig().set("crop_corner", crop_corner_));
|
|
createFunction(
|
|
backward_, "CropGrad", FuncConfig().set("crop_corner", crop_corner_));
|
|
|
|
return true;
|
|
}
|
|
|
|
void CropLayer::setOutDims() {
|
|
MatrixPtr input = inputLayers_[1]->getOutputValue();
|
|
size_t batchSize = input->getHeight();
|
|
// get target dims from input_1
|
|
if (config_.inputs_size() == 2) {
|
|
targetDims_.setDim(0, batchSize);
|
|
int ch = config_.inputs(0).image_conf().channels();
|
|
if (ch != 0) targetDims_.setDim(1, ch);
|
|
int h = inputLayers_[1]->getOutput().getFrameHeight();
|
|
if (h != 0) targetDims_.setDim(2, h);
|
|
int w = inputLayers_[1]->getOutput().getFrameWidth();
|
|
if (w != 0) targetDims_.setDim(3, w);
|
|
}
|
|
// get final crop shape from target dims and crop axis
|
|
std::vector<uint32_t> crop_shape;
|
|
int dimSize = 4;
|
|
for (int i = 0; i < dimSize; i++) {
|
|
if (i >= crop_axis_) {
|
|
crop_shape.push_back(targetDims_[i]);
|
|
} else {
|
|
crop_shape.push_back(inDims_[i]);
|
|
}
|
|
}
|
|
|
|
outDims_.reshape(
|
|
{crop_shape[0], crop_shape[1], crop_shape[2], crop_shape[3]});
|
|
output_.setFrameHeight(crop_shape[2]);
|
|
output_.setFrameWidth(crop_shape[3]);
|
|
}
|
|
|
|
void CropLayer::setInDims() {
|
|
MatrixPtr input = inputLayers_[0]->getOutputValue();
|
|
size_t batchSize = input->getHeight();
|
|
inDims_.setDim(0, batchSize);
|
|
int h = inputLayers_[0]->getOutput().getFrameHeight();
|
|
if (h != 0) inDims_.setDim(2, h);
|
|
int w = inputLayers_[0]->getOutput().getFrameWidth();
|
|
if (w != 0) inDims_.setDim(3, w);
|
|
}
|
|
|
|
void CropLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
setInDims();
|
|
setOutDims();
|
|
int size = outDims_[1] * outDims_[2] * outDims_[3];
|
|
resetOutput(outDims_[0], size);
|
|
MatrixPtr outV = getOutputValue();
|
|
REGISTER_TIMER_INFO("CropForward", getName().c_str());
|
|
|
|
BufferArgs inputs;
|
|
BufferArgs outputs;
|
|
inputs.addArg(*getInputValue(0), inDims_);
|
|
outputs.addArg(*getOutputValue(), outDims_, ASSIGN_TO);
|
|
forward_[0]->calc(inputs, outputs);
|
|
}
|
|
|
|
void CropLayer::backward(const UpdateCallback& callback) {
|
|
(void)callback;
|
|
REGISTER_TIMER_INFO("CropBackward", getName().c_str());
|
|
|
|
BufferArgs inputs;
|
|
BufferArgs outputs;
|
|
inputs.addArg(*getOutputGrad(), outDims_);
|
|
outputs.addArg(*getInputGrad(0), inDims_, ADD_TO);
|
|
backward_[0]->calc(inputs, outputs);
|
|
}
|
|
} // namespace paddle
|