You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
5.9 KiB
156 lines
5.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/operators/net_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class FCOp : public NetOp {
|
|
public:
|
|
FCOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: NetOp(type, inputs, outputs, attrs) {
|
|
auto x = Inputs("X");
|
|
auto w = Inputs("W");
|
|
auto mul_out = Outputs("MulOut");
|
|
PADDLE_ENFORCE_EQ(
|
|
x.size(), w.size(),
|
|
"The size of inputs X(%d) should be the same as that of weights W(%d).",
|
|
x.size(), w.size());
|
|
PADDLE_ENFORCE_EQ(mul_out.size(), x.size(),
|
|
"The size of intermediate mul_out(%d) should be the same "
|
|
"as that of inputs X(%d).",
|
|
mul_out.size(), x.size());
|
|
|
|
size_t n = x.size();
|
|
PADDLE_ENFORCE_GE(n, static_cast<size_t>(1),
|
|
"The size of inputs X(%d) should be no less than 1.", n);
|
|
|
|
auto x_num_col_dims = Attr<std::vector<int>>("xNumColDims");
|
|
auto w_num_col_dims = Attr<std::vector<int>>("wNumColDims");
|
|
PADDLE_ENFORCE_EQ(x_num_col_dims.size(), n,
|
|
"The size of attribute xNumColDims(%d) should be the "
|
|
"same as that of inputs X(%d).",
|
|
x_num_col_dims.size(), n);
|
|
PADDLE_ENFORCE_EQ(w_num_col_dims.size(), n,
|
|
"The size of attribute wNumColDims(%d) should be the "
|
|
"same as that of inputs X(%d).",
|
|
w_num_col_dims.size(), n)
|
|
|
|
// mul_out[i] = X[i] * W[i]
|
|
for (size_t i = 0; i < n; i++) {
|
|
framework::AttributeMap mul_attr;
|
|
mul_attr["x_num_col_dims"] = static_cast<int>(x_num_col_dims[i]);
|
|
mul_attr["y_num_col_dims"] = static_cast<int>(w_num_col_dims[i]);
|
|
AppendOp(
|
|
framework::OpRegistry::CreateOp("mul", {{"X", {x[i]}}, {"Y", {w[i]}}},
|
|
{{"Out", {mul_out[i]}}}, mul_attr));
|
|
}
|
|
|
|
// sum_out = X[0] * W[0] + ... + X[n-1] * W[n-1]
|
|
if (n > 1) {
|
|
AppendOp(framework::OpRegistry::CreateOp(
|
|
"sum", {{"X", {mul_out}}}, {{"Out", {Output("SumOut")}}}, {}));
|
|
} else {
|
|
AppendOp(framework::OpRegistry::CreateOp(
|
|
"identity", {{"X", {mul_out[0]}}}, {{"Y", {Output("SumOut")}}}, {}));
|
|
}
|
|
|
|
// add_out = sum_out + b
|
|
auto b = Input("B");
|
|
std::string add_out = "SumOut";
|
|
if (b != framework::kEmptyVarName) {
|
|
add_out = "AddOut";
|
|
AppendOp(framework::OpRegistry::CreateOp(
|
|
"rowwise_add", {{"X", {Output("SumOut")}}, {"b", {Input("B")}}},
|
|
{{"Out", {Output(add_out)}}}, {}));
|
|
} else {
|
|
if (Output("AddOut") != framework::kEmptyVarName) {
|
|
this->Rename(Output("AddOut"), framework::kEmptyVarName);
|
|
}
|
|
}
|
|
|
|
auto activation = Attr<std::string>("activation");
|
|
AppendOp(framework::OpRegistry::CreateOp(
|
|
activation, {{"X", {Output(add_out)}}}, {{"Y", {Output("Y")}}}, {}));
|
|
CompleteAddOp(false);
|
|
}
|
|
};
|
|
|
|
class FCOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
FCOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "The inputs of FC operator, a ordered vector of 2-D matrix.")
|
|
.AsDuplicable();
|
|
AddInput("W", "The weights of FC operator, a ordered vector of 2-D matrix.")
|
|
.AsDuplicable();
|
|
AddInput("B", "The 1-D bias vector of FC operator");
|
|
|
|
AddOutput("Y", "The activated output matrix of FC operator");
|
|
AddOutput("MulOut",
|
|
"The intermediate outputs of FC operator, "
|
|
"saving the product of X[i] * W[i]")
|
|
.AsIntermediate()
|
|
.AsDuplicable();
|
|
AddOutput("SumOut",
|
|
"The intermediate output of FC operator, "
|
|
"saving the sum of products, sum(X[i] * W[i])")
|
|
.AsIntermediate();
|
|
AddOutput("AddOut",
|
|
"The non-actived output of FC operator, saving X * W + b")
|
|
.AsIntermediate();
|
|
AddAttr<std::string>("activation", "The activation type of FC operator.")
|
|
.SetDefault("identity")
|
|
.InEnum({"identity", "sigmoid", "softmax"});
|
|
AddAttr<std::vector<int>>("xNumColDims", "");
|
|
AddAttr<std::vector<int>>("wNumColDims", "");
|
|
|
|
AddComment(R"DOC(
|
|
Fully Connected Operator, known as Fully Connected Layer or Inner Product Layer
|
|
in Convolutional Neural Networks. Neurons in a fully connected layer have
|
|
full connections to all activations in the previous layer.
|
|
It computes an inner product of a set of
|
|
learned weights with a matrix multiplication followed by a bias offset
|
|
(optionally).
|
|
|
|
Equation:
|
|
Y = Act(sum_n{X_i * W_i} + b)
|
|
|
|
where X_i is a 2D matrix of size (M x K), usually M is the minibatch size and
|
|
K is the number of features. W_i is also a 2D matrix of size (K x N),
|
|
where N means the number of neurons in the fully connected layer.
|
|
b is a 1D vector of size N. Thus, the output Y is a 2D matrix of size (M x N).
|
|
Activation type can be set to `identity` (default), `sigmoid` or `softmax`.
|
|
|
|
The config api is `paddle.v2.layer.fc`.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
USE_OP(mul);
|
|
USE_OP(rowwise_add);
|
|
USE_NO_KERNEL_OP(identity);
|
|
USE_OP(sigmoid);
|
|
USE_OP(softmax);
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_WITHOUT_GRADIENT(fc, ops::FCOp, ops::FCOpMaker);
|