58 lines
2.0 KiB
58 lines
2.0 KiB
#include "adadelta_optimizer.h"
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
|
|
namespace paddle {
|
|
namespace optimizer {
|
|
|
|
void AdadeltaOptimizer::Update(const Tensor* gradient) {
|
|
num_sample_passed_ += 1;
|
|
double learning_rate = lr_policy_->LearningRate(num_sample_passed_);
|
|
Tensor& param = *parameter_;
|
|
const Tensor& grad = *gradient;
|
|
Tensor& accum_g = *accum_gradient_;
|
|
Tensor& accum_d = *accum_delta_;
|
|
Tensor& update_d = *update_delta_;
|
|
for (size_t i = 0; i < param.size(); ++i) {
|
|
accum_g[i] = rho_ * accum_g[i] + (1.0 - rho_) * grad[i] * grad[i];
|
|
|
|
update_d[i] = std::sqrt(accum_d[i] + epsilon_) /
|
|
std::sqrt(accum_g[i] + epsilon_) * grad[i];
|
|
|
|
accum_d[i] = rho_ * accum_d[i] + (1.0 - rho_) * update_d[i] * update_d[i];
|
|
|
|
param[i] -= learning_rate * update_d[i] + learning_rate * decay_ * param[i];
|
|
}
|
|
}
|
|
|
|
const char* AdadeltaOptimizer::SerializeState(int* state_len) {
|
|
AdadeltaOptimizerState state;
|
|
state.set_num_sample_passed(num_sample_passed_);
|
|
std::string lr_str = this->lr_policy_->SerializeState(state_len);
|
|
state.mutable_lr_state()->ParseFromString(lr_str);
|
|
|
|
TensorToProto(*parameter_, state.mutable_parameter());
|
|
TensorToProto(*accum_gradient_, state.mutable_accum_gradient());
|
|
TensorToProto(*accum_delta_, state.mutable_accum_delta());
|
|
TensorToProto(*update_delta_, state.mutable_update_delta());
|
|
auto str = state.SerializeAsString();
|
|
*state_len += str.size();
|
|
return str.c_str();
|
|
}
|
|
|
|
void AdadeltaOptimizer::DeserializeState(const std::string& str) {
|
|
AdadeltaOptimizerState state;
|
|
state.ParseFromString(str);
|
|
auto lr_state = state.lr_state();
|
|
this->lr_policy_->DeserializeState(lr_state.SerializeAsString());
|
|
num_sample_passed_ = state.num_sample_passed();
|
|
|
|
ProtoToTensor(state.parameter(), parameter_);
|
|
ProtoToTensor(state.accum_gradient(), accum_gradient_);
|
|
ProtoToTensor(state.accum_delta(), accum_delta_);
|
|
ProtoToTensor(state.update_delta(), update_delta_);
|
|
}
|
|
|
|
} // namespace optimizer
|
|
} // namespace paddle
|