You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
152 lines
5.5 KiB
152 lines
5.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include "Function.h"
|
|
|
|
namespace paddle {
|
|
|
|
/*
|
|
* \brief Based on the ConvFunctionBase class, the forward calculation,
|
|
* backward input calculation and backward filter calculation
|
|
* of convolution operations can be implemented.
|
|
*
|
|
* Arguments of forward and backward calculation:
|
|
* 1. Forward calculation of convolution.
|
|
* inputs = {INPUT, FILTER}, outputs = {OUTPUT}
|
|
* The first and second input arguments are input image and filter data.
|
|
* The output argument is output image.
|
|
*
|
|
* 2. Backward input calculation of convolution.
|
|
* inputs = {OUTPUT_GRAD, FILTER}, outputs = {INPUT_GRAD}
|
|
* The first and second input arguments are output grad image
|
|
* and filter data.
|
|
* The output argument is input grad image.
|
|
*
|
|
* 3. Backward filter calculation of convolution.
|
|
* inputs = {OUTPUT_GRAD, INPUT}, outputs = {FILTER_GRAD}
|
|
* The first and second input arguments are output grad image
|
|
* and input image.
|
|
* The output argument is filter grad.
|
|
*
|
|
* Arguments format of input, filter and output:
|
|
* 1. Input image, output image, input image gradient, output image gradient
|
|
* are all NCHW format. Where N is batch size, C is the number of channels,
|
|
* H and W is the height and width of image or image gradient.
|
|
*
|
|
* 2. The format of the filter data is MCHW, where M is the number of output
|
|
* image channels, C is the number of input image channels,
|
|
* H and W is height and width of filter.
|
|
*
|
|
* If `groups` is greater than 1, the filter's data format should be GMCHW,
|
|
* where G is the `groups`, and G * M is the number of output image
|
|
* channels, G * C is the number of input image channels,
|
|
* H and W is height and width of filter.
|
|
*/
|
|
class ConvFunctionBase : public FunctionBase {
|
|
public:
|
|
void init(const FuncConfig& config) override {
|
|
// function arguments
|
|
strides_ = config.get<std::vector<size_t>>("strides");
|
|
paddings_ = config.get<std::vector<size_t>>("paddings");
|
|
groups_ = config.get<size_t>("groups");
|
|
|
|
// number of inputs and outputs
|
|
numInputs_ = 2;
|
|
numOutputs_ = 1;
|
|
}
|
|
|
|
// input can be INPUT and INPUT_GRAD
|
|
// filter can be FILTER and FILTER_GRAD
|
|
// output can be OUTPUT and OUTPUT_GRAD
|
|
void checkShape(const TensorShape& input,
|
|
const TensorShape& filter,
|
|
const TensorShape& output) {
|
|
// inputs and outputs arguments should be 4-dimensional.
|
|
CHECK_EQ(input.ndims(), (size_t)4);
|
|
CHECK_EQ(output.ndims(), (size_t)4);
|
|
// The batchSize of the input needs to be equal to
|
|
// the batchSize of the output.
|
|
CHECK_EQ(input[0], output[0]);
|
|
|
|
if (filter.ndims() == (size_t)4) {
|
|
// If the filter's dimension is 4, groups convolution is not supported.
|
|
CHECK_EQ(groups_, (size_t)1);
|
|
// The input and output channel dimensions are the second and first
|
|
// dimensions of the filter shape.
|
|
CHECK_EQ(input[1], filter[1]);
|
|
CHECK_EQ(output[1], filter[0]);
|
|
} else {
|
|
// filter argument should be 5-dimensional.
|
|
CHECK_EQ(filter.ndims(), (size_t)5);
|
|
// The first dimension of the filter is the size of the group
|
|
CHECK_EQ(filter[0], groups_);
|
|
// The input and output channel dimensions are the third and second
|
|
// dimensions of the filter shape.
|
|
CHECK_EQ(input[1], filter[2] * groups_);
|
|
CHECK_EQ(output[1], filter[1] * groups_);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
size_t getFilterHeight(const TensorShape& filter) const {
|
|
return filter[filter.ndims() - 2];
|
|
}
|
|
|
|
size_t getFilterWidth(const TensorShape& filter) const {
|
|
return filter[filter.ndims() - 1];
|
|
}
|
|
|
|
// determine whether im2col needs to be performed
|
|
inline bool isNeedIm2col(const TensorShape& filter) const {
|
|
return !(getFilterHeight(filter) == 1 && getFilterWidth(filter) == 1 &&
|
|
strideH() == 1 && strideW() == 1 && paddingH() == 0 &&
|
|
paddingW() == 0);
|
|
}
|
|
|
|
std::vector<size_t> strides_;
|
|
std::vector<size_t> paddings_;
|
|
|
|
/// Group size, refer to grouped convolution in
|
|
/// Alex Krizhevsky's paper: when group=2, the first half of the
|
|
/// filters are only connected to the first half of the input channels,
|
|
/// and the second half only connected to the second half.
|
|
size_t groups_;
|
|
|
|
inline int strideH() const { return strides_[0]; }
|
|
|
|
inline int strideW() const { return strides_[1]; }
|
|
|
|
inline int paddingH() const { return paddings_[0]; }
|
|
|
|
inline int paddingW() const { return paddings_[1]; }
|
|
|
|
// A temporary memory in convolution calculation.
|
|
MemoryHandlePtr memory_;
|
|
|
|
template <DeviceType Device>
|
|
void resizeBuffer(size_t newSize) {
|
|
if (!memory_ || newSize * sizeof(real) > memory_->getAllocSize()) {
|
|
if (Device == DEVICE_TYPE_CPU) {
|
|
memory_ = std::make_shared<CpuMemoryHandle>(newSize * sizeof(real));
|
|
} else {
|
|
memory_ = std::make_shared<GpuMemoryHandle>(newSize * sizeof(real));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace paddle
|