You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
79 lines
2.6 KiB
79 lines
2.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <algorithm>
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
|
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
|
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenScalar = framework::EigenScalar<T, MajorType, IndexType>;
|
|
|
|
template <typename Place, typename T>
|
|
class AccuracyKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* inference = ctx.Input<Tensor>("Out");
|
|
auto* indices = ctx.Input<Tensor>("Indices");
|
|
auto* label = ctx.Input<Tensor>("Label");
|
|
auto* accuracy = ctx.Output<Tensor>("Accuracy");
|
|
|
|
float* accuracy_data = accuracy->mutable_data<float>(ctx.GetPlace());
|
|
|
|
const int64_t* indices_data = indices->data<int64_t>();
|
|
const int64_t* label_data = label->data<int64_t>();
|
|
|
|
size_t num_samples = inference->dims()[0];
|
|
size_t class_dim = inference->dims()[1];
|
|
*accuracy_data = 0.0f;
|
|
|
|
if (num_samples == 0) {
|
|
return;
|
|
}
|
|
|
|
int num_correct = 0;
|
|
// assume inference is already the topk of the output
|
|
for (size_t i = 0; i < num_samples; ++i) {
|
|
PADDLE_ENFORCE_GE(label_data[i], 0, "label must >= 0");
|
|
for (size_t j = 0; j < class_dim; ++j) {
|
|
if (indices_data[i * class_dim + j] == label_data[i]) {
|
|
++num_correct;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME(typhoonzero): we don't accumulate the accuracy for now.
|
|
*accuracy_data =
|
|
static_cast<float>(num_correct) / static_cast<float>(num_samples);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|