You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
321 lines
13 KiB
321 lines
13 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/operators/math/im2col.h"
|
|
#include "paddle/operators/math/math_function.h"
|
|
#include "paddle/operators/math/vol2col.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
// Base convolution operator definations for other conv
|
|
// like operators to reuse the implementation.
|
|
inline int OutputSize(int input_size, int filter_size, int padding,
|
|
int stride) {
|
|
int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
|
|
return output_size;
|
|
}
|
|
|
|
// Define Op classes in .h file so that other conv
|
|
// operator implementations can reuse the code.
|
|
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
Conv2DOpMaker(framework::OpProto* proto,
|
|
framework::OpAttrChecker* op_checker);
|
|
};
|
|
|
|
class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
Conv3DOpMaker(framework::OpProto* proto,
|
|
framework::OpAttrChecker* op_checker);
|
|
};
|
|
|
|
class ConvOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override;
|
|
};
|
|
|
|
class ConvOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override;
|
|
};
|
|
|
|
template <typename Place, typename T>
|
|
class GemmConvKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* input = context.Input<Tensor>("Input");
|
|
// The filter will be reshaped in the calculations,
|
|
// so here use an assignment operation,
|
|
// that avoids modifying the variable in the Scope.
|
|
Tensor filter = *context.Input<Tensor>("Filter");
|
|
Tensor* output = context.Output<Tensor>("Output");
|
|
output->mutable_data<T>(context.GetPlace());
|
|
|
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
|
int groups = context.Attr<int>("groups");
|
|
|
|
const int batch_size = static_cast<int>(input->dims()[0]);
|
|
|
|
// filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w}
|
|
std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
|
|
filter_shape_vec.erase(filter_shape_vec.begin(),
|
|
filter_shape_vec.begin() + 2);
|
|
|
|
// output_shape_vec: {o_h, o_w} or {o_d, o_h, o_w}
|
|
std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
|
|
output_shape_vec.erase(output_shape_vec.begin(),
|
|
output_shape_vec.begin() + 2);
|
|
|
|
// use col_shape in the im2col calculation
|
|
// col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
|
|
// o_h, o_w}
|
|
std::vector<int64_t> col_shape_vec;
|
|
col_shape_vec.push_back(input->dims()[1] / groups);
|
|
col_shape_vec.insert(col_shape_vec.end(), filter_shape_vec.begin(),
|
|
filter_shape_vec.end());
|
|
col_shape_vec.insert(col_shape_vec.end(), output_shape_vec.begin(),
|
|
output_shape_vec.end());
|
|
framework::DDim col_shape(framework::make_ddim(col_shape_vec));
|
|
|
|
// use col_matrix_shape in the gemm calculation
|
|
// size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d *
|
|
// o_h * o_w)
|
|
framework::DDim col_matrix_shape =
|
|
framework::flatten_to_2d(col_shape, filter_shape_vec.size() + 1);
|
|
|
|
Tensor col;
|
|
col.mutable_data<T>(col_shape, context.GetPlace());
|
|
// col_matrix shares the same piece of data with col,
|
|
// but will be reshaped into a two-dimensional matrix shape
|
|
// to call the matrix multiplication interface.
|
|
Tensor col_matrix;
|
|
col_matrix.ShareDataWith(col);
|
|
col_matrix.Resize(col_matrix_shape);
|
|
|
|
framework::DDim input_shape = framework::slice_ddim(
|
|
input->dims(), 1, static_cast<int>(input->dims().size()));
|
|
|
|
framework::DDim filter_matrix_shape = {filter.dims()[0],
|
|
filter.numel() / filter.dims()[0]};
|
|
filter.Resize(filter_matrix_shape);
|
|
|
|
framework::DDim output_matrix_shape = {
|
|
output->dims()[1],
|
|
output->numel() / (output->dims()[0] * output->dims()[1])};
|
|
|
|
// convolution operator: im2col(or vol2col) + gemm
|
|
int in_step = static_cast<int>(input->dims()[1]) / groups;
|
|
int out_step = static_cast<int>(output->dims()[1]) / groups;
|
|
|
|
for (int i = 0; i < batch_size; i++) {
|
|
Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
|
|
Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
|
|
for (int g = 0; g < groups; g++) {
|
|
Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
|
|
|
|
if (filter_shape_vec.size() == 2) {
|
|
// im2col
|
|
math::Im2ColFunctor<math::ColFormat::kCFO, Place, T> im2col;
|
|
im2col(context.device_context(), in_slice, col, strides[0],
|
|
strides[1], paddings[0], paddings[0], paddings[1],
|
|
paddings[1]);
|
|
} else if (filter_shape_vec.size() == 3) {
|
|
// vol2col
|
|
math::Vol2ColFunctor<Place, T> vol2col;
|
|
vol2col(context.device_context(), in_slice, col, strides[0],
|
|
strides[1], strides[2], paddings[0], paddings[1],
|
|
paddings[2]);
|
|
}
|
|
|
|
// gemm
|
|
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
|
|
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
|
|
math::matmul<Place, T>(context.device_context(), filter_slice, false,
|
|
col_matrix, false, T(1.0), &out_slice, T(0.0));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Place, typename T>
|
|
class GemmConvGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* input = context.Input<Tensor>("Input");
|
|
const Tensor* output_grad =
|
|
context.Input<Tensor>(framework::GradVarName("Output"));
|
|
Tensor* input_grad =
|
|
context.Output<Tensor>(framework::GradVarName("Input"));
|
|
Tensor* filter_grad =
|
|
context.Output<Tensor>(framework::GradVarName("Filter"));
|
|
// The filter and filter_grad will be reshaped in the calculations,
|
|
// so here use an assignment operation,
|
|
// that avoids modifying the variable in the Scope.
|
|
Tensor filter = *context.Input<Tensor>("Filter");
|
|
|
|
if (!input_grad && !filter_grad) return;
|
|
|
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
|
int groups = context.Attr<int>("groups");
|
|
|
|
const int batch_size = static_cast<int>(input->dims()[0]);
|
|
|
|
// filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w}
|
|
std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
|
|
filter_shape_vec.erase(filter_shape_vec.begin(),
|
|
filter_shape_vec.begin() + 2);
|
|
|
|
// output_shape_vec: {o_h, o_w} or {o_d, o_h, o_w}
|
|
std::vector<int64_t> output_shape_vec(
|
|
framework::vectorize(output_grad->dims()));
|
|
output_shape_vec.erase(output_shape_vec.begin(),
|
|
output_shape_vec.begin() + 2);
|
|
|
|
// use col_shape in the im2col calculation
|
|
// col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
|
|
// o_h, o_w}
|
|
std::vector<int64_t> col_shape_vec;
|
|
col_shape_vec.push_back(input->dims()[1] / groups);
|
|
col_shape_vec.insert(col_shape_vec.end(), filter_shape_vec.begin(),
|
|
filter_shape_vec.end());
|
|
col_shape_vec.insert(col_shape_vec.end(), output_shape_vec.begin(),
|
|
output_shape_vec.end());
|
|
framework::DDim col_shape(framework::make_ddim(col_shape_vec));
|
|
|
|
// use col_matrix_shape in the gemm calculation
|
|
// size: (i_c/g * k_h * k_w, o_h * o_w)
|
|
// or
|
|
// (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
|
|
framework::DDim col_matrix_shape =
|
|
framework::flatten_to_2d(col_shape, filter_shape_vec.size() + 1);
|
|
|
|
framework::DDim input_shape = framework::slice_ddim(
|
|
input->dims(), 1, static_cast<int>(input->dims().size()));
|
|
|
|
framework::DDim filter_matrix_shape = {filter.dims()[0],
|
|
filter.numel() / filter.dims()[0]};
|
|
filter.Resize(filter_matrix_shape);
|
|
|
|
framework::DDim output_matrix_shape = {
|
|
output_grad->dims()[1],
|
|
output_grad->numel() /
|
|
(output_grad->dims()[0] * output_grad->dims()[1])};
|
|
|
|
// convolution backward input operator: gemm + col2im(or col2vol)
|
|
// convolution backward weight operator: im2col(or vol2col) + gemm
|
|
int in_step = static_cast<int>(input->dims()[1]) / groups;
|
|
int out_step = static_cast<int>(output_grad->dims()[1]) / groups;
|
|
|
|
Tensor col;
|
|
// col_matrix shares the same piece of data with col,
|
|
// but will be reshaped into a two-dimensional matrix shape
|
|
// to call the matrix multiplication interface.
|
|
Tensor col_matrix;
|
|
col.mutable_data<T>(col_shape, context.GetPlace());
|
|
col_matrix.ShareDataWith(col);
|
|
col_matrix.Resize(col_matrix_shape);
|
|
|
|
math::SetConstant<Place, T> set_zero;
|
|
|
|
if (input_grad) {
|
|
input_grad->mutable_data<T>(context.GetPlace());
|
|
set_zero(context.device_context(), input_grad, static_cast<T>(0));
|
|
|
|
for (int i = 0; i < batch_size; i++) {
|
|
Tensor out_grad_batch =
|
|
output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
|
|
Tensor in_grad_batch = input_grad->Slice(i, i + 1).Resize(input_shape);
|
|
for (int g = 0; g < groups; g++) {
|
|
// gemm
|
|
Tensor out_grad_slice =
|
|
out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
|
|
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
|
|
math::matmul<Place, T>(context.device_context(), filter_slice, true,
|
|
out_grad_slice, false, T(1.0), &col_matrix,
|
|
T(0.0));
|
|
// col2im
|
|
Tensor in_grad_slice =
|
|
in_grad_batch.Slice(g * in_step, (g + 1) * in_step);
|
|
|
|
if (filter_shape_vec.size() == 2) {
|
|
math::Col2ImFunctor<math::ColFormat::kCFO, Place, T> col2im;
|
|
col2im(context.device_context(), in_grad_slice, col, strides[0],
|
|
strides[1], paddings[0], paddings[0], paddings[1],
|
|
paddings[1]);
|
|
|
|
} else if (filter_shape_vec.size() == 3) {
|
|
math::Col2VolFunctor<Place, T> col2vol;
|
|
col2vol(context.device_context(), in_grad_slice, col, strides[0],
|
|
strides[1], strides[2], paddings[0], paddings[1],
|
|
paddings[2]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (filter_grad) {
|
|
filter_grad->mutable_data<T>(context.GetPlace());
|
|
Tensor filter_grad_ = *filter_grad;
|
|
filter_grad_.Resize(filter_matrix_shape);
|
|
set_zero(context.device_context(), filter_grad, static_cast<T>(0));
|
|
|
|
for (int i = 0; i < batch_size; i++) {
|
|
Tensor out_grad_batch =
|
|
output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
|
|
Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
|
|
for (int g = 0; g < groups; g++) {
|
|
// im2col
|
|
Tensor out_grad_slice =
|
|
out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
|
|
Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
|
|
|
|
if (filter_shape_vec.size() == 2) {
|
|
math::Im2ColFunctor<math::ColFormat::kCFO, Place, T> im2col;
|
|
im2col(context.device_context(), in_slice, col, strides[0],
|
|
strides[1], paddings[0], paddings[0], paddings[1],
|
|
paddings[1]);
|
|
} else if (filter_shape_vec.size() == 3) {
|
|
math::Vol2ColFunctor<Place, T> vol2col;
|
|
vol2col(context.device_context(), in_slice, col, strides[0],
|
|
strides[1], strides[2], paddings[0], paddings[1],
|
|
paddings[2]);
|
|
}
|
|
|
|
// gemm
|
|
Tensor filter_grad_slice =
|
|
filter_grad_.Slice(g * out_step, (g + 1) * out_step);
|
|
math::matmul<Place, T>(context.device_context(), out_grad_slice,
|
|
false, col_matrix, true, T(1.0),
|
|
&filter_grad_slice, T(1.0));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|