You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
7.8 KiB
225 lines
7.8 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import unittest
|
|
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
import paddle.fluid.layers as layers
|
|
import paddle.fluid.framework as framework
|
|
from paddle.fluid.executor import Executor
|
|
from paddle.fluid.framework import Program, program_guard
|
|
|
|
|
|
class TestCond(unittest.TestCase):
|
|
def test_return_single_var(self):
|
|
"""
|
|
pseudocode:
|
|
|
|
if 0.23 < 0.1:
|
|
return 2
|
|
else:
|
|
return -1
|
|
"""
|
|
|
|
def true_func():
|
|
return layers.fill_constant(shape=[2, 3], dtype='int32', value=2)
|
|
|
|
def false_func():
|
|
return layers.fill_constant(shape=[3, 2], dtype='int32', value=-1)
|
|
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
with program_guard(main_program, startup_program):
|
|
x = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
|
|
y = layers.fill_constant(shape=[1], dtype='float32', value=0.23)
|
|
pred = layers.less_than(y, x)
|
|
out = layers.cond(pred, true_func, false_func)
|
|
# out is one tensor
|
|
|
|
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
ret = exe.run(main_program, fetch_list=[out.name])
|
|
self.assertTrue(
|
|
np.allclose(np.asarray(ret), np.full((3, 2), -1, np.int32)))
|
|
|
|
def test_return_var_tuple(self):
|
|
"""
|
|
pseudocode:
|
|
|
|
if True:
|
|
return 1, True
|
|
else:
|
|
return 3, 2
|
|
"""
|
|
|
|
def true_func():
|
|
return layers.fill_constant(
|
|
shape=[1, 2], dtype='int32', value=1), layers.fill_constant(
|
|
shape=[2, 3], dtype='bool', value=True)
|
|
|
|
def false_func():
|
|
return layers.fill_constant(
|
|
shape=[3, 4], dtype='float32', value=3), layers.fill_constant(
|
|
shape=[4, 5], dtype='int64', value=2)
|
|
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
with program_guard(main_program, startup_program):
|
|
pred = layers.fill_constant(shape=[1], dtype='bool', value=True)
|
|
out = layers.cond(pred, true_func, false_func)
|
|
# out is a tuple containing 2 tensors
|
|
|
|
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
ret = exe.run(main_program, fetch_list=out)
|
|
self.assertTrue(
|
|
np.allclose(np.asarray(ret[0]), np.full((1, 2), 1, np.int32)))
|
|
self.assertTrue(
|
|
np.allclose(np.asarray(ret[1]), np.full((2, 3), True, np.bool)))
|
|
|
|
def test_pass_and_modify_var(self):
|
|
"""
|
|
pseudocode:
|
|
for i in range(5):
|
|
a = 7
|
|
if i % 2 == 0:
|
|
a = a * (i + 1)
|
|
else:
|
|
a = a - (i - 1)
|
|
"""
|
|
|
|
def true_func(a, i):
|
|
a = a * (i + 1)
|
|
return a
|
|
|
|
def false_func(a, i):
|
|
a = a - (i - 1)
|
|
return a
|
|
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
with program_guard(main_program, startup_program):
|
|
a = layers.fill_constant(shape=[3, 2, 1], dtype='int32', value=7)
|
|
i = fluid.data(name="i", shape=[1], dtype='int32')
|
|
pred = ((i % 2) == 0)
|
|
a = layers.cond(pred, lambda: true_func(a, i),
|
|
lambda: false_func(a, i))
|
|
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
for feed_i in range(5):
|
|
expected_a = 7 * (feed_i + 1) if feed_i % 2 == 0 else 8 - feed_i
|
|
ret = exe.run(main_program,
|
|
feed={'i': np.full((1), feed_i, np.int32)},
|
|
fetch_list=[a])
|
|
self.assertTrue(
|
|
np.allclose(
|
|
np.asarray(ret), np.full((3, 2, 1), expected_a, np.int32)))
|
|
|
|
def test_return_none(self):
|
|
"""
|
|
pseudocode: test doing nothing in branches
|
|
for i in range(5):
|
|
if i % 2 == 0:
|
|
pass
|
|
else:
|
|
pass
|
|
"""
|
|
|
|
def true_func():
|
|
pass
|
|
|
|
def false_func():
|
|
return None
|
|
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
with program_guard(main_program, startup_program):
|
|
i = fluid.data(name="i", shape=[1], dtype='int32')
|
|
pred = ((i % 2) == 0)
|
|
out1 = layers.cond(pred, true_func, false_func)
|
|
out2 = layers.cond(pred, None, false_func)
|
|
out3 = layers.cond(pred, true_func, None)
|
|
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
for feed_i in range(5):
|
|
# Test that output is None is runnable
|
|
exe.run(main_program, feed={'i': np.full((1), feed_i, np.int32)})
|
|
self.assertIsNone(out1)
|
|
self.assertIsNone(out2)
|
|
self.assertIsNone(out3)
|
|
|
|
def test_wrong_structure_exception(self):
|
|
"""
|
|
test returning different number of tensors cannot merge into output
|
|
"""
|
|
|
|
def func_return_none():
|
|
return None
|
|
|
|
def func_return_one_tensor():
|
|
return layers.fill_constant(shape=[2, 7], dtype='int32', value=3)
|
|
|
|
def func_return_two_tensors():
|
|
return layers.fill_constant(
|
|
shape=[3, 1], dtype='int32', value=7), layers.fill_constant(
|
|
shape=[3, 1], dtype='int32', value=8)
|
|
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
with program_guard(main_program, startup_program):
|
|
i = fluid.data(name="i", shape=[1], dtype='int32')
|
|
pred = ((i % 2) == 0)
|
|
with self.assertRaises(Exception) as e:
|
|
out = layers.cond(pred, i, func_return_one_tensor)
|
|
self.assertEqual("The true_fn in cond must be callable",
|
|
str(e.exception))
|
|
|
|
with self.assertRaises(Exception) as e:
|
|
out = layers.cond(pred, func_return_one_tensor, np.asarray([3]))
|
|
self.assertEqual("The false_fn in cond must be callable",
|
|
str(e.exception))
|
|
|
|
with self.assertRaises(Exception) as e:
|
|
out = layers.cond(pred, func_return_none,
|
|
func_return_one_tensor)
|
|
self.assertTrue(
|
|
"Incompatible return values of true_fn and false_fn in cond" in
|
|
str(e.exception))
|
|
|
|
with self.assertRaises(Exception) as e:
|
|
out = layers.cond(pred, func_return_two_tensors,
|
|
func_return_none)
|
|
self.assertTrue(
|
|
"Incompatible return values of true_fn and false_fn in cond" in
|
|
str(e.exception))
|
|
|
|
with self.assertRaises(Exception) as e:
|
|
out = layers.cond(pred, func_return_one_tensor,
|
|
func_return_two_tensors)
|
|
self.assertTrue(
|
|
"Incompatible return values of true_fn and false_fn in cond" in
|
|
str(e.exception))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|