You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_dgc_optimizer.py

109 lines
4.1 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
import paddle.compat as cpt
from paddle.fluid.backward import append_backward
from paddle.fluid.transpiler.details import program_to_code
class TestDGCMomentumOptimizer(unittest.TestCase):
class MockDGCMomentum(optimizer.DGCMomentumOptimizer):
def get_accumulators(self):
return self._accumulators
def get_velocity_str(self):
return self._u_velocity_acc_str
def check_dgc_momentum_optimizer(self, dims=[5, 10, 8], name="momentum"):
init_program = framework.Program()
program = framework.Program()
block = program.global_block()
mul_x = block.create_parameter(
dtype="float32",
shape=[dims[0], dims[1]],
lod_level=0,
name="mul.x",
optimize_attr={'learning_rate': 1.1})
mul_y = block.create_var(
dtype="float32",
shape=[dims[1], dims[2]],
lod_level=0,
name="mul.y")
mul_out = block.create_var(
dtype="float32",
shape=[dims[0], dims[2]],
lod_level=0,
name="mul.out")
block.append_op(
type="mul",
inputs={"X": mul_x,
"Y": mul_y},
outputs={"Out": mul_out},
attrs={"x_num_col_dims": 1})
learning_rate = 0.01
dgc_momentum_optimizer = self.MockDGCMomentum(
learning_rate=learning_rate, momentum=0.2, rampup_begin_step=0)
mean_out = block.create_var(
dtype="float32", shape=[1], lod_level=0, name="mean.out")
block.append_op(
type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
# params_grads = append_backward(mean_out)
params_grads = dgc_momentum_optimizer.backward(mean_out)
accumulator_count = 1 if name == "momentum" else 2
self.assertEqual(len(params_grads), 1)
self.assertEqual(
len(dgc_momentum_optimizer.get_accumulators()), accumulator_count)
with framework.program_guard(program, init_program):
opts = dgc_momentum_optimizer.apply_gradients(params_grads)
self.assertEqual(len(opts), 2)
sgd_op = opts[-1]
self.assertEqual([op.type for op in opts], ["scale", name])
self.assertFalse(sgd_op.attr('use_nesterov'))
# Check accumulators
accumulators = dgc_momentum_optimizer.get_accumulators()
self.assertEqual(len(accumulators), accumulator_count)
self.assertTrue(
dgc_momentum_optimizer.get_velocity_str() in accumulators)
velocity_acc = accumulators[dgc_momentum_optimizer.get_velocity_str()]
self.assertEqual(len(velocity_acc), 1)
self.assertTrue(mul_x.name in velocity_acc)
# Check init_program
init_ops = init_program.global_block().ops
self.assertEqual(len(init_ops), 1)
self.assertEqual(init_ops[0].type, "fill_constant")
self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
with open("test_dgc_optimizer_" + name + ".log", "w") as f:
program_to_code(program, fout=f)
def test_momentum_without_dgc(self):
self.check_dgc_momentum_optimizer()
def test_momentum_with_dgc(self):
# 16 * 1024 = 16384, use dgc momentum
self.check_dgc_momentum_optimizer(
dims=[16, 1024, 8], name="dgc_momentum")
if __name__ == '__main__':
unittest.main()