You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/tests/test_callback_reduce_lr_on_...

107 lines
3.9 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import unittest
import time
import random
import tempfile
import shutil
import numpy as np
import paddle
import paddle.vision.transforms as T
from paddle import Model
from paddle.static import InputSpec
from paddle.vision.models import LeNet
from paddle.hapi.callbacks import config_callbacks
from paddle.vision.datasets import MNIST
from paddle.metric import Accuracy
from paddle.nn.layer.loss import CrossEntropyLoss
# Accelerate unittest
class CustomMnist(MNIST):
def __len__(self):
return 8
class TestReduceLROnPlateau(unittest.TestCase):
def test_reduce_lr_on_plateau(self):
transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
train_dataset = CustomMnist(mode='train', transform=transform)
val_dataset = CustomMnist(mode='test', transform=transform)
net = LeNet()
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=net.parameters())
inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')]
model = Model(net, inputs=inputs, labels=labels)
model.prepare(optim, loss=CrossEntropyLoss(), metrics=[Accuracy()])
callbacks = paddle.callbacks.ReduceLROnPlateau(
patience=1, verbose=1, cooldown=1)
model.fit(train_dataset,
val_dataset,
batch_size=8,
log_freq=1,
save_freq=10,
epochs=10,
callbacks=[callbacks])
def test_warn_or_error(self):
with self.assertRaises(ValueError):
paddle.callbacks.ReduceLROnPlateau(factor=2.0)
# warning
paddle.callbacks.ReduceLROnPlateau(mode='1', patience=3, verbose=1)
transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
train_dataset = CustomMnist(mode='train', transform=transform)
val_dataset = CustomMnist(mode='test', transform=transform)
net = LeNet()
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=net.parameters())
inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')]
model = Model(net, inputs=inputs, labels=labels)
model.prepare(optim, loss=CrossEntropyLoss(), metrics=[Accuracy()])
callbacks = paddle.callbacks.ReduceLROnPlateau(
monitor='miou', patience=3, verbose=1)
model.fit(train_dataset,
val_dataset,
batch_size=8,
log_freq=1,
save_freq=10,
epochs=1,
callbacks=[callbacks])
optim = paddle.optimizer.Adam(
learning_rate=paddle.optimizer.lr.PiecewiseDecay([0.001, 0.0001],
[5, 10]),
parameters=net.parameters())
model.prepare(optim, loss=CrossEntropyLoss(), metrics=[Accuracy()])
callbacks = paddle.callbacks.ReduceLROnPlateau(
monitor='acc', mode='max', patience=3, verbose=1, cooldown=1)
model.fit(train_dataset,
val_dataset,
batch_size=8,
log_freq=1,
save_freq=10,
epochs=3,
callbacks=[callbacks])
if __name__ == '__main__':
unittest.main()