You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
238 lines
7.7 KiB
238 lines
7.7 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
import unittest
|
|
import time
|
|
import random
|
|
import tempfile
|
|
import shutil
|
|
import numpy as np
|
|
|
|
import paddle
|
|
from paddle import Model
|
|
from paddle.static import InputSpec
|
|
from paddle.vision.models import LeNet
|
|
from paddle.hapi.callbacks import config_callbacks
|
|
import paddle.vision.transforms as T
|
|
from paddle.vision.datasets import MNIST
|
|
from paddle.metric import Accuracy
|
|
from paddle.nn.layer.loss import CrossEntropyLoss
|
|
|
|
|
|
class MnistDataset(MNIST):
|
|
def __init__(self, mode, return_label=True, sample_num=None):
|
|
super(MnistDataset, self).__init__(mode=mode)
|
|
self.return_label = return_label
|
|
if sample_num:
|
|
self.images = self.images[:sample_num]
|
|
self.labels = self.labels[:sample_num]
|
|
|
|
def __getitem__(self, idx):
|
|
img, label = self.images[idx], self.labels[idx]
|
|
img = np.reshape(img, [1, 28, 28])
|
|
if self.return_label:
|
|
return img, np.array(self.labels[idx]).astype('int64')
|
|
return img,
|
|
|
|
def __len__(self):
|
|
return len(self.images)
|
|
|
|
|
|
class TestCallbacks(unittest.TestCase):
|
|
def setUp(self):
|
|
self.save_dir = tempfile.mkdtemp()
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.save_dir)
|
|
|
|
def run_callback(self):
|
|
epochs = 2
|
|
steps = 50
|
|
freq = 2
|
|
eval_steps = 20
|
|
|
|
inputs = [InputSpec([None, 1, 28, 28], 'float32', 'image')]
|
|
lenet = Model(LeNet(), inputs)
|
|
lenet.prepare()
|
|
|
|
cbks = config_callbacks(
|
|
model=lenet,
|
|
batch_size=128,
|
|
epochs=epochs,
|
|
steps=steps,
|
|
log_freq=freq,
|
|
verbose=self.verbose,
|
|
metrics=['loss', 'acc'],
|
|
save_dir=self.save_dir)
|
|
cbks.on_begin('train')
|
|
|
|
logs = {'loss': 50.341673, 'acc': 0.00256}
|
|
for epoch in range(epochs):
|
|
cbks.on_epoch_begin(epoch)
|
|
for step in range(steps):
|
|
cbks.on_batch_begin('train', step, logs)
|
|
logs['loss'] -= random.random() * 0.1
|
|
logs['acc'] += random.random() * 0.1
|
|
time.sleep(0.005)
|
|
cbks.on_batch_end('train', step, logs)
|
|
cbks.on_epoch_end(epoch, logs)
|
|
|
|
eval_logs = {'eval_loss': 20.341673, 'eval_acc': 0.256}
|
|
params = {
|
|
'steps': eval_steps,
|
|
'metrics': ['eval_loss', 'eval_acc'],
|
|
}
|
|
cbks.on_begin('eval', params)
|
|
for step in range(eval_steps):
|
|
cbks.on_batch_begin('eval', step, eval_logs)
|
|
eval_logs['eval_loss'] -= random.random() * 0.1
|
|
eval_logs['eval_acc'] += random.random() * 0.1
|
|
eval_logs['batch_size'] = 2
|
|
time.sleep(0.005)
|
|
cbks.on_batch_end('eval', step, eval_logs)
|
|
cbks.on_end('eval', eval_logs)
|
|
|
|
test_logs = {}
|
|
params = {'steps': eval_steps}
|
|
cbks.on_begin('predict', params)
|
|
for step in range(eval_steps):
|
|
cbks.on_batch_begin('predict', step, test_logs)
|
|
test_logs['batch_size'] = 2
|
|
time.sleep(0.005)
|
|
cbks.on_batch_end('predict', step, test_logs)
|
|
cbks.on_end('predict', test_logs)
|
|
|
|
cbks.on_end('train')
|
|
|
|
def test_callback_verbose_0(self):
|
|
self.verbose = 0
|
|
self.run_callback()
|
|
|
|
def test_callback_verbose_1(self):
|
|
self.verbose = 1
|
|
self.run_callback()
|
|
|
|
def test_callback_verbose_2(self):
|
|
self.verbose = 2
|
|
self.run_callback()
|
|
|
|
def test_callback_verbose_3(self):
|
|
self.verbose = 3
|
|
self.run_callback()
|
|
|
|
def test_visualdl_callback(self):
|
|
# visualdl not support python2
|
|
if sys.version_info < (3, ):
|
|
return
|
|
|
|
inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
|
|
labels = [InputSpec([None, 1], 'int64', 'label')]
|
|
|
|
transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
|
|
train_dataset = paddle.vision.datasets.MNIST(
|
|
mode='train', transform=transform)
|
|
eval_dataset = paddle.vision.datasets.MNIST(
|
|
mode='test', transform=transform)
|
|
|
|
net = paddle.vision.LeNet()
|
|
model = paddle.Model(net, inputs, labels)
|
|
|
|
optim = paddle.optimizer.Adam(0.001, parameters=net.parameters())
|
|
model.prepare(
|
|
optimizer=optim,
|
|
loss=paddle.nn.CrossEntropyLoss(),
|
|
metrics=paddle.metric.Accuracy())
|
|
|
|
callback = paddle.callbacks.VisualDL(log_dir='visualdl_log_dir')
|
|
model.fit(train_dataset,
|
|
eval_dataset,
|
|
batch_size=64,
|
|
callbacks=callback)
|
|
|
|
def test_earlystopping(self):
|
|
paddle.seed(2020)
|
|
for dynamic in [True, False]:
|
|
paddle.enable_static if not dynamic else None
|
|
device = paddle.set_device('cpu')
|
|
sample_num = 100
|
|
train_dataset = MnistDataset(mode='train', sample_num=sample_num)
|
|
val_dataset = MnistDataset(mode='test', sample_num=sample_num)
|
|
|
|
net = LeNet()
|
|
optim = paddle.optimizer.Adam(
|
|
learning_rate=0.001, parameters=net.parameters())
|
|
|
|
inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
|
|
labels = [InputSpec([None, 1], 'int64', 'label')]
|
|
|
|
model = Model(net, inputs=inputs, labels=labels)
|
|
model.prepare(
|
|
optim,
|
|
loss=CrossEntropyLoss(reduction="sum"),
|
|
metrics=[Accuracy()])
|
|
callbacks_0 = paddle.callbacks.EarlyStopping(
|
|
'loss',
|
|
mode='min',
|
|
patience=1,
|
|
verbose=1,
|
|
min_delta=0,
|
|
baseline=None,
|
|
save_best_model=True)
|
|
callbacks_1 = paddle.callbacks.EarlyStopping(
|
|
'acc',
|
|
mode='auto',
|
|
patience=1,
|
|
verbose=1,
|
|
min_delta=0,
|
|
baseline=0,
|
|
save_best_model=True)
|
|
callbacks_2 = paddle.callbacks.EarlyStopping(
|
|
'loss',
|
|
mode='auto_',
|
|
patience=1,
|
|
verbose=1,
|
|
min_delta=0,
|
|
baseline=None,
|
|
save_best_model=True)
|
|
callbacks_3 = paddle.callbacks.EarlyStopping(
|
|
'acc_',
|
|
mode='max',
|
|
patience=1,
|
|
verbose=1,
|
|
min_delta=0,
|
|
baseline=0,
|
|
save_best_model=True)
|
|
model.fit(
|
|
train_dataset,
|
|
val_dataset,
|
|
batch_size=64,
|
|
save_freq=10,
|
|
save_dir=self.save_dir,
|
|
epochs=10,
|
|
verbose=0,
|
|
callbacks=[callbacks_0, callbacks_1, callbacks_2, callbacks_3])
|
|
# Test for no val_loader
|
|
model.fit(train_dataset,
|
|
batch_size=64,
|
|
save_freq=10,
|
|
save_dir=self.save_dir,
|
|
epochs=10,
|
|
verbose=0,
|
|
callbacks=[callbacks_0])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|