You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_cross_entropy2_op.py

96 lines
3.3 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from op_test import OpTest
import unittest
import numpy as np
import six
class CrossEntropy2OpTestBase(OpTest):
def initParameters(self):
return [32, 64], 'float32', -100, False
def calc_output(self, logits, label, ignore_index):
ret = np.zeros(shape=label.shape, dtype=logits.dtype)
match_x = np.zeros(shape=label.shape, dtype=logits.dtype)
for idx in six.moves.range(label.shape[0]):
if label[idx] == ignore_index:
continue
match_x[idx] = logits[idx][label[idx]]
ret[idx] = -np.log(match_x[idx])
return ret, match_x
def setUp(self):
self.shape, self.dtype, self.ignore_index, self.drop_last_dim = self.initParameters(
)
self.op_type = 'cross_entropy2'
feature_size = int(self.shape[-1])
batch_size = int(np.prod(self.shape) / feature_size)
logits = (np.random.random(size=self.shape) + 1).astype(self.dtype)
label_shape = self.shape[0:-1] if self.drop_last_dim else self.shape[
0:-1] + [1]
label = np.random.random_integers(
low=0, high=feature_size - 1, size=label_shape).astype('int64')
outputs, match_x = self.calc_output(
np.reshape(logits, [batch_size, feature_size]),
np.reshape(label, [batch_size, 1]), self.ignore_index)
self.inputs = {'X': logits, 'Label': label}
out_shape = label_shape
self.outputs = {
'Y': np.reshape(outputs, out_shape),
'MatchX': np.reshape(match_x, self.shape[:-1] + [1]),
'XShape': np.zeros(
shape=logits.shape, dtype=logits.dtype)
}
self.attrs = {'ignore_index': self.ignore_index}
def test_check_output(self):
self.check_output(no_check_set=['XShape'])
def test_check_grad(self):
self.check_grad(
inputs_to_check=['X'],
output_names=['Y'],
no_grad_set=['XShape', 'MatchX', 'Label'])
class CrossEntropy2OpTest2(CrossEntropy2OpTestBase):
def initParameters(self):
return [32, 64], 'float64', 3, False
class CrossEntropy2OpTest2RemoveLastDim(CrossEntropy2OpTestBase):
def initParameters(self):
return [32, 64], 'float64', 3, True
class CrossEntropy2OpTest3(CrossEntropy2OpTestBase):
def initParameters(self):
return [4, 8, 16, 32], 'float32', -100, False
class CrossEntropy2OpTest3RemoveLastDim(CrossEntropy2OpTestBase):
def initParameters(self):
return [4, 8, 16, 32], 'float32', -100, True
class CrossEntropy2OpTest4(CrossEntropy2OpTestBase):
def initParameters(self):
return [4, 8, 16, 32], 'float32', 3, False
if __name__ == '__main__':
unittest.main()