You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/framework/tensor_py.h

117 lines
3.9 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/framework/tensor.h"
#include "paddle/memory/memcpy.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
namespace py = pybind11;
namespace paddle {
namespace framework {
namespace details {
template <bool less, size_t I, typename... ARGS>
struct CastToPyBufferImpl;
template <size_t I, typename... ARGS>
struct CastToPyBufferImpl<false, I, ARGS...> {
py::buffer_info operator()(framework::Tensor &tensor) {
PADDLE_THROW("This type of tensor cannot be expose to Python");
return py::buffer_info();
}
};
template <size_t I, typename... ARGS>
struct CastToPyBufferImpl<true, I, ARGS...> {
using CUR_TYPE = typename std::tuple_element<I, std::tuple<ARGS...>>::type;
py::buffer_info operator()(framework::Tensor &tensor) {
if (std::type_index(typeid(CUR_TYPE)) == tensor.holder_->type()) {
auto dim_vec = framework::vectorize(tensor.dims());
std::vector<size_t> dims_outside;
std::vector<size_t> strides;
dims_outside.resize(dim_vec.size());
strides.resize(dim_vec.size());
size_t prod = 1;
for (size_t i = dim_vec.size(); i != 0; --i) {
dims_outside[i - 1] = (size_t)dim_vec[i - 1];
strides[i - 1] = sizeof(CUR_TYPE) * prod;
prod *= dims_outside[i - 1];
}
framework::Tensor dst_tensor;
if (paddle::platform::is_gpu_place(tensor.holder_->place())) {
dst_tensor.CopyFrom<CUR_TYPE>(tensor, platform::CPUPlace());
} else if (paddle::platform::is_cpu_place(tensor.holder_->place())) {
dst_tensor = tensor;
}
return py::buffer_info(
dst_tensor.mutable_data<CUR_TYPE>(dst_tensor.holder_->place()),
sizeof(CUR_TYPE), py::format_descriptor<CUR_TYPE>::format(),
(size_t)framework::arity(dst_tensor.dims()), dims_outside, strides);
} else {
constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value;
return CastToPyBufferImpl<less, I + 1, ARGS...>()(tensor);
}
}
};
} // namespace details
inline py::buffer_info CastToPyBuffer(framework::Tensor &tensor) {
auto buffer_info = details::CastToPyBufferImpl<true, 0, float, int>()(tensor);
return buffer_info;
}
template <typename T>
void PyCPUTensorSetFromArray(
framework::Tensor &self,
py::array_t<T, py::array::c_style | py::array::forcecast> array,
paddle::platform::CPUPlace &place) {
std::vector<int> dims;
dims.reserve(array.ndim());
for (size_t i = 0; i < array.ndim(); ++i) {
dims.push_back((int)array.shape()[i]);
}
self.Resize(framework::make_ddim(dims));
auto *dst = self.mutable_data<T>(place);
std::memcpy(dst, array.data(), sizeof(T) * array.size());
}
#ifndef PADDLE_ONLY_CPU
template <typename T>
void PyCUDATensorSetFromArray(
framework::Tensor &self,
py::array_t<T, py::array::c_style | py::array::forcecast> array,
paddle::platform::GPUPlace &place) {
std::vector<int> dims;
dims.reserve(array.ndim());
for (size_t i = 0; i < array.ndim(); ++i) {
dims.push_back((int)array.shape()[i]);
}
self.Resize(framework::make_ddim(dims));
auto *dst = self.mutable_data<T>(place);
paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(),
cudaMemcpyHostToDevice);
}
#endif
} // namespace pybind
} // namespace paddle