Paddle/python/paddle/fluid/dygraph/tracer.py

107 lines
3.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import six
from collections import defaultdict
from paddle.fluid import core
from paddle.fluid import framework
__all__ = ['Tracer']
def release_op(op):
del framework._dygraph_tracer()._ops[op._trace_id].inputs
del framework._dygraph_tracer()._ops[op._trace_id].outputs
del framework._dygraph_tracer()._ops[op._trace_id].backward_refs
class Tracer(core.Tracer):
"""
Python wrapper of dygraph tracer
"""
def __init__(self, block):
super(Tracer, self).__init__(block)
self._ops = defaultdict()
self._vars = defaultdict()
self._trace_id = 0
self._train_mode = True
def trace_var(self, name, var):
self._vars[name] = var
def all_parameters(self):
return list((item for name, item in six.iteritems(self._vars)
if isinstance(item, framework.Parameter)))
def _clear_ops(self):
self._ops = defaultdict()
self._trace_id = 0
def trace_op(self, op, inputs, outputs, stop_gradient=False):
# TODO(hy): previous version will cause memory failed
op.inputs = inputs
inps = defaultdict(list)
for k, vars in six.iteritems(inputs):
if isinstance(vars, framework.Variable):
inps[k].append(vars._ivar)
elif isinstance(vars, list) or isinstance(vars, tuple):
for var in vars:
inps[k].append(var._ivar)
op.outputs = outputs
outs = defaultdict(list)
for k, vars in six.iteritems(outputs):
if isinstance(vars, framework.Variable):
outs[k].append(vars._ivar)
elif isinstance(vars, list) or isinstance(vars, tuple):
for var in vars:
outs[k].append(var._ivar)
# record op's trace id
op.iop._trace_id = self._trace_id
backward_refs = self.trace(op.iop, inps, outs, op.attrs,
framework._current_expected_place(),
stop_gradient)
if not stop_gradient and self._train_mode:
self._trace_id += 1
self._ops[op.iop._trace_id] = op
# register backward hooks and variables if needed
if len(backward_refs) > 0:
op.iop.register_backward_hooks(release_op)
# TODO(minqiyang): remove all inputs and outputs after separate
# var and grad
op.backward_refs = defaultdict(list)
for k, v in six.iteritems(inputs):
if k in backward_refs:
op.backward_refs[k] = inputs[k]
for k, v in six.iteritems(outputs):
if k in backward_refs:
op.backward_refs[k] = outputs[k]
def train_mode(self):
self._train_mode = True
def eval_mode(self):
self._train_mode = False