You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							599 lines
						
					
					
						
							19 KiB
						
					
					
				
			
		
		
	
	
							599 lines
						
					
					
						
							19 KiB
						
					
					
				| // Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| ///
 | |
| /// \file paddle_analysis_config.h
 | |
| ///
 | |
| /// \brief Paddle Analysis Config API信息
 | |
| ///
 | |
| /// \author paddle-infer@baidu.com
 | |
| /// \date 2020-03-20
 | |
| /// \since 1.7
 | |
| ///
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <cassert>
 | |
| #include <map>
 | |
| #include <memory>
 | |
| #include <string>
 | |
| #include <unordered_set>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| #include "paddle_infer_declare.h"  // NOLINT
 | |
| 
 | |
| /*! \file */
 | |
| // Here we include some header files with relative paths, for that in deploy,
 | |
| // the abstract path of this header file will be changed.
 | |
| #include "paddle_api.h"           // NOLINT
 | |
| #include "paddle_pass_builder.h"  // NOLINT
 | |
| #ifdef PADDLE_WITH_MKLDNN
 | |
| #include "paddle_mkldnn_quantizer_config.h"  // NOLINT
 | |
| #endif
 | |
| 
 | |
| namespace paddle {
 | |
| 
 | |
| class AnalysisPredictor;
 | |
| struct MkldnnQuantizerConfig;
 | |
| 
 | |
| ///
 | |
| /// \brief configuration manager for AnalysisPredictor.
 | |
| /// \since 1.7.0
 | |
| ///
 | |
| /// AnalysisConfig manages configurations of AnalysisPredictor.
 | |
| /// During inference procedure, there are many parameters(model/params path,
 | |
| /// place of inference, etc.)
 | |
| /// to be specified, and various optimizations(subgraph fusion, memory
 | |
| /// optimazation, TensorRT engine, etc.)
 | |
| /// to be done. Users can manage these settings by creating and modifying an
 | |
| /// AnalysisConfig,
 | |
| /// and loading it into AnalysisPredictor.
 | |
| ///
 | |
| struct PD_INFER_DECL AnalysisConfig {
 | |
|   AnalysisConfig() = default;
 | |
|   ///
 | |
|   /// \brief Construct a new AnalysisConfig from another
 | |
|   /// AnalysisConfig.
 | |
|   ///
 | |
|   /// \param[in] other another AnalysisConfig
 | |
|   ///
 | |
|   explicit AnalysisConfig(const AnalysisConfig& other);
 | |
|   ///
 | |
|   /// \brief Construct a new AnalysisConfig from a no-combined model.
 | |
|   ///
 | |
|   /// \param[in] model_dir model directory of the no-combined model.
 | |
|   ///
 | |
|   explicit AnalysisConfig(const std::string& model_dir);
 | |
|   ///
 | |
|   /// \brief Construct a new AnalysisConfig from a combined model.
 | |
|   ///
 | |
|   /// \param[in] prog_file model file path of the combined model.
 | |
|   /// \param[in] params_file params file path of the combined model.
 | |
|   ///
 | |
|   explicit AnalysisConfig(const std::string& prog_file,
 | |
|                           const std::string& params_file);
 | |
|   ///
 | |
|   /// \brief Precision of inference in TensorRT.
 | |
|   ///
 | |
|   enum class Precision {
 | |
|     kFloat32 = 0,  ///< fp32
 | |
|     kInt8,         ///< int8
 | |
|     kHalf,         ///< fp16
 | |
|   };
 | |
| 
 | |
|   ///
 | |
|   /// \brief Set the no-combined model dir path.
 | |
|   ///
 | |
|   /// \param model_dir model dir path.
 | |
|   ///
 | |
|   void SetModel(const std::string& model_dir) { model_dir_ = model_dir; }
 | |
| 
 | |
|   ///
 | |
|   /// \brief Set the combined model with two specific pathes for program and
 | |
|   /// parameters.
 | |
|   ///
 | |
|   /// \param prog_file_path model file path of the combined model.
 | |
|   /// \param params_file_path params file path of the combined model.
 | |
|   ///
 | |
|   void SetModel(const std::string& prog_file_path,
 | |
|                 const std::string& params_file_path);
 | |
|   ///
 | |
|   /// \brief Set the model file path of a combined model.
 | |
|   ///
 | |
|   /// \param x model file path.
 | |
|   ///
 | |
|   void SetProgFile(const std::string& x) { prog_file_ = x; }
 | |
|   ///
 | |
|   /// \brief Set the params file path of a combined model.
 | |
|   ///
 | |
|   /// \param x params file path.
 | |
|   ///
 | |
|   void SetParamsFile(const std::string& x) { params_file_ = x; }
 | |
| 
 | |
|   ///
 | |
|   /// \brief Set the path of optimization cache directory.
 | |
|   ///
 | |
|   /// \param opt_cache_dir the path of optimization cache directory.
 | |
|   ///
 | |
|   void SetOptimCacheDir(const std::string& opt_cache_dir) {
 | |
|     opt_cache_dir_ = opt_cache_dir;
 | |
|   }
 | |
|   ///
 | |
|   /// \brief Get the model directory path.
 | |
|   ///
 | |
|   /// \return const std::string& The model directory path.
 | |
|   ///
 | |
|   const std::string& model_dir() const { return model_dir_; }
 | |
|   ///
 | |
|   /// \brief Get the program file path.
 | |
|   ///
 | |
|   /// \return const std::string& The program file path.
 | |
|   ///
 | |
|   const std::string& prog_file() const { return prog_file_; }
 | |
|   ///
 | |
|   /// \brief Get the combined parameters file.
 | |
|   ///
 | |
|   /// \return const std::string& The combined parameters file.
 | |
|   ///
 | |
|   const std::string& params_file() const { return params_file_; }
 | |
| 
 | |
|   // Padding related.
 | |
| 
 | |
|   ///
 | |
|   /// \brief Turn off FC Padding.
 | |
|   ///
 | |
|   ///
 | |
|   void DisableFCPadding();
 | |
|   ///
 | |
|   /// \brief A boolean state telling whether fc padding is used.
 | |
|   ///
 | |
|   /// \return bool Whether fc padding is used.
 | |
|   ///
 | |
|   bool use_fc_padding() const { return use_fc_padding_; }
 | |
| 
 | |
|   // GPU related.
 | |
| 
 | |
|   ///
 | |
|   /// \brief Turn on GPU.
 | |
|   ///
 | |
|   /// \param memory_pool_init_size_mb initial size of the GPU memory pool in MB.
 | |
|   /// \param device_id device_id the GPU card to use (default is 0).
 | |
|   ///
 | |
|   void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0);
 | |
|   ///
 | |
|   /// \brief Turn off GPU.
 | |
|   ///
 | |
|   ///
 | |
|   void DisableGpu();
 | |
|   ///
 | |
|   /// \brief A boolean state telling whether the GPU is turned on.
 | |
|   ///
 | |
|   /// \return bool Whether the GPU is turned on.
 | |
|   ///
 | |
|   bool use_gpu() const { return use_gpu_; }
 | |
|   ///
 | |
|   /// \brief Get the GPU device id.
 | |
|   ///
 | |
|   /// \return int The GPU device id.
 | |
|   ///
 | |
|   int gpu_device_id() const { return device_id_; }
 | |
|   ///
 | |
|   /// \brief Get the initial size in MB of the GPU memory pool.
 | |
|   ///
 | |
|   /// \return int The initial size in MB of the GPU memory pool.
 | |
|   ///
 | |
|   int memory_pool_init_size_mb() const { return memory_pool_init_size_mb_; }
 | |
|   ///
 | |
|   /// \brief Get the proportion of the initial memory pool size compared to the
 | |
|   /// device.
 | |
|   ///
 | |
|   /// \return float The proportion of the initial memory pool size.
 | |
|   ///
 | |
|   float fraction_of_gpu_memory_for_pool() const;
 | |
| 
 | |
|   // CUDNN related.
 | |
|   ///
 | |
|   /// \brief Turn on CUDNN.
 | |
|   ///
 | |
|   ///
 | |
|   void EnableCUDNN();
 | |
|   ///
 | |
|   /// \brief A boolean state telling whether to use CUDNN.
 | |
|   ///
 | |
|   /// \return bool Whether to use CUDNN.
 | |
|   ///
 | |
|   bool cudnn_enabled() const { return use_cudnn_; }
 | |
| 
 | |
|   ///
 | |
|   /// \brief Control whether to perform IR graph optimization.
 | |
|   /// If turned off, the AnalysisConfig will act just like a NativeConfig.
 | |
|   ///
 | |
|   /// \param x Whether the ir graph optimization is actived.
 | |
|   ///
 | |
|   void SwitchIrOptim(int x = true) { enable_ir_optim_ = x; }
 | |
|   ///
 | |
|   /// \brief A boolean state telling whether the ir graph optimization is
 | |
|   /// actived.
 | |
|   ///
 | |
|   /// \return bool Whether to use ir graph optimization.
 | |
|   ///
 | |
|   bool ir_optim() const { return enable_ir_optim_; }
 | |
| 
 | |
|   ///
 | |
|   /// \brief INTERNAL Determine whether to use the feed and fetch operators.
 | |
|   /// Just for internal development, not stable yet.
 | |
|   /// When ZeroCopyTensor is used, this should be turned off.
 | |
|   ///
 | |
|   /// \param x Whether to use the feed and fetch operators.
 | |
|   ///
 | |
|   void SwitchUseFeedFetchOps(int x = true) { use_feed_fetch_ops_ = x; }
 | |
|   ///
 | |
|   /// \brief A boolean state telling whether to use the feed and fetch
 | |
|   /// operators.
 | |
|   ///
 | |
|   /// \return bool Whether to use the feed and fetch operators.
 | |
|   ///
 | |
|   bool use_feed_fetch_ops_enabled() const { return use_feed_fetch_ops_; }
 | |
| 
 | |
|   ///
 | |
|   /// \brief Control whether to specify the inputs' names.
 | |
|   /// The ZeroCopyTensor type has a name member, assign it with the
 | |
|   /// corresponding
 | |
|   /// variable name. This is used only when the input ZeroCopyTensors passed to
 | |
|   /// the
 | |
|   /// AnalysisPredictor.ZeroCopyRun() cannot follow the order in the training
 | |
|   /// phase.
 | |
|   ///
 | |
|   /// \param x Whether to specify the inputs' names.
 | |
|   ///
 | |
|   void SwitchSpecifyInputNames(bool x = true) { specify_input_name_ = x; }
 | |
|   ///
 | |
|   /// \brief A boolean state tell whether the input ZeroCopyTensor names
 | |
|   /// specified should
 | |
|   /// be used to reorder the inputs in AnalysisPredictor.ZeroCopyRun().
 | |
|   ///
 | |
|   /// \return bool Whether to specify the inputs' names.
 | |
|   ///
 | |
|   bool specify_input_name() const { return specify_input_name_; }
 | |
| 
 | |
|   ///
 | |
|   /// \brief Turn on the TensorRT engine.
 | |
|   /// The TensorRT engine will accelerate some subgraphes in the original Fluid
 | |
|   /// computation graph. In some models such as resnet50, GoogleNet and so on,
 | |
|   /// it gains significant performance acceleration.
 | |
|   ///
 | |
|   /// \param workspace_size The memory size(in byte) used for TensorRT
 | |
|   /// workspace.
 | |
|   /// \param max_batch_size The maximum batch size of this prediction task,
 | |
|   /// better set as small as possible for less performance loss.
 | |
|   /// \param min_subgrpah_size The minimum TensorRT subgraph size needed, if a
 | |
|   /// subgraph is smaller than this, it will not be transferred to TensorRT
 | |
|   /// engine.
 | |
|   /// \param precision The precision used in TensorRT.
 | |
|   /// \param use_static Serialize optimization information to disk for reusing.
 | |
|   /// \param use_calib_mode Use TRT int8 calibration(post training
 | |
|   /// quantization).
 | |
|   ///
 | |
|   ///
 | |
|   void EnableTensorRtEngine(int workspace_size = 1 << 20,
 | |
|                             int max_batch_size = 1, int min_subgraph_size = 3,
 | |
|                             Precision precision = Precision::kFloat32,
 | |
|                             bool use_static = false,
 | |
|                             bool use_calib_mode = true);
 | |
|   ///
 | |
|   /// \brief A boolean state telling whether the TensorRT engine is used.
 | |
|   ///
 | |
|   /// \return bool Whether the TensorRT engine is used.
 | |
|   ///
 | |
|   bool tensorrt_engine_enabled() const { return use_tensorrt_; }
 | |
|   ///
 | |
|   /// \brief Set min, max, opt shape for TensorRT Dynamic shape mode.
 | |
|   /// \param min_input_shape The min input shape of the subgraph input.
 | |
|   /// \param max_input_shape The max input shape of the subgraph input.
 | |
|   /// \param opt_input_shape The opt input shape of the subgraph input.
 | |
|   /// \param disable_trt_plugin_fp16 Setting this parameter to true means that
 | |
|   /// TRT plugin will not run fp16.
 | |
|   ///
 | |
|   void SetTRTDynamicShapeInfo(
 | |
|       std::map<std::string, std::vector<int>> min_input_shape,
 | |
|       std::map<std::string, std::vector<int>> max_input_shape,
 | |
|       std::map<std::string, std::vector<int>> optim_input_shape,
 | |
|       bool disable_trt_plugin_fp16 = false);
 | |
|   ///
 | |
|   /// \brief Turn on the usage of Lite sub-graph engine.
 | |
|   ///
 | |
|   /// \param precision_mode Precion used in Lite sub-graph engine.
 | |
|   /// \param passes_filter Set the passes used in Lite sub-graph engine.
 | |
|   /// \param ops_filter Operators not supported by Lite.
 | |
|   ///
 | |
|   void EnableLiteEngine(
 | |
|       AnalysisConfig::Precision precision_mode = Precision::kFloat32,
 | |
|       const std::vector<std::string>& passes_filter = {},
 | |
|       const std::vector<std::string>& ops_filter = {});
 | |
| 
 | |
|   ///
 | |
|   /// \brief A boolean state indicating whether the Lite sub-graph engine is
 | |
|   /// used.
 | |
|   ///
 | |
|   /// \return bool whether the Lite sub-graph engine is used.
 | |
|   ///
 | |
|   bool lite_engine_enabled() const { return use_lite_; }
 | |
| 
 | |
|   ///
 | |
|   /// \brief Control whether to debug IR graph analysis phase.
 | |
|   /// This will generate DOT files for visualizing the computation graph after
 | |
|   /// each analysis pass applied.
 | |
|   ///
 | |
|   /// \param x whether to debug IR graph analysis phase.
 | |
|   ///
 | |
|   void SwitchIrDebug(int x = true);
 | |
| 
 | |
|   ///
 | |
|   /// \brief Turn on MKLDNN.
 | |
|   ///
 | |
|   ///
 | |
|   void EnableMKLDNN();
 | |
|   ///
 | |
|   /// \brief Set the cache capacity of different input shapes for MKLDNN.
 | |
|   /// Default value 0 means not caching any shape.
 | |
|   /// Please see MKL-DNN Data Caching Design Document:
 | |
|   /// https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/mkldnn/caching/caching.md
 | |
|   ///
 | |
|   /// \param capacity The cache capacity.
 | |
|   ///
 | |
|   void SetMkldnnCacheCapacity(int capacity);
 | |
|   ///
 | |
|   /// \brief A boolean state telling whether to use the MKLDNN.
 | |
|   ///
 | |
|   /// \return bool Whether to use the MKLDNN.
 | |
|   ///
 | |
|   bool mkldnn_enabled() const { return use_mkldnn_; }
 | |
| 
 | |
|   ///
 | |
|   /// \brief Set the number of cpu math library threads.
 | |
|   ///
 | |
|   /// \param cpu_math_library_num_threads The number of cpu math library
 | |
|   /// threads.
 | |
|   ///
 | |
|   void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads);
 | |
|   ///
 | |
|   /// \brief An int state telling how many threads are used in the CPU math
 | |
|   /// library.
 | |
|   ///
 | |
|   /// \return int The number of threads used in the CPU math library.
 | |
|   ///
 | |
|   int cpu_math_library_num_threads() const {
 | |
|     return cpu_math_library_num_threads_;
 | |
|   }
 | |
| 
 | |
|   ///
 | |
|   /// \brief Transform the AnalysisConfig to NativeConfig.
 | |
|   ///
 | |
|   /// \return NativeConfig The NativeConfig transformed.
 | |
|   ///
 | |
|   NativeConfig ToNativeConfig() const;
 | |
|   ///
 | |
|   /// \brief Specify the operator type list to use MKLDNN acceleration.
 | |
|   ///
 | |
|   /// \param op_list The operator type list.
 | |
|   ///
 | |
|   void SetMKLDNNOp(std::unordered_set<std::string> op_list) {
 | |
|     mkldnn_enabled_op_types_ = op_list;
 | |
|   }
 | |
| 
 | |
|   ///
 | |
|   /// \brief Turn on MKLDNN quantization.
 | |
|   ///
 | |
|   ///
 | |
|   void EnableMkldnnQuantizer();
 | |
| 
 | |
|   ///
 | |
|   /// \brief A boolean state telling whether the thread local CUDA stream is
 | |
|   /// enabled.
 | |
|   ///
 | |
|   /// \return bool Whether the thread local CUDA stream is enabled.
 | |
|   ///
 | |
|   bool thread_local_stream_enabled() const { return thread_local_stream_; }
 | |
| 
 | |
|   ///
 | |
|   /// \brief A boolean state telling whether the MKLDNN quantization is enabled.
 | |
|   ///
 | |
|   /// \return bool Whether the MKLDNN quantization is enabled.
 | |
|   ///
 | |
|   bool mkldnn_quantizer_enabled() const { return use_mkldnn_quantizer_; }
 | |
| 
 | |
|   ///
 | |
|   /// \brief Get MKLDNN quantizer config.
 | |
|   ///
 | |
|   /// \return MkldnnQuantizerConfig* MKLDNN quantizer config.
 | |
|   ///
 | |
|   MkldnnQuantizerConfig* mkldnn_quantizer_config() const;
 | |
| 
 | |
|   ///
 | |
|   /// \brief Specify the memory buffer of program and parameter.
 | |
|   /// Used when model and params are loaded directly from memory.
 | |
|   ///
 | |
|   /// \param prog_buffer The memory buffer of program.
 | |
|   /// \param prog_buffer_size The size of the model data.
 | |
|   /// \param params_buffer The memory buffer of the combined parameters file.
 | |
|   /// \param params_buffer_size The size of the combined parameters data.
 | |
|   ///
 | |
|   void SetModelBuffer(const char* prog_buffer, size_t prog_buffer_size,
 | |
|                       const char* params_buffer, size_t params_buffer_size);
 | |
|   ///
 | |
|   /// \brief A boolean state telling whether the model is set from the CPU
 | |
|   /// memory.
 | |
|   ///
 | |
|   /// \return bool Whether model and params are loaded directly from memory.
 | |
|   ///
 | |
|   bool model_from_memory() const { return model_from_memory_; }
 | |
| 
 | |
|   ///
 | |
|   /// \brief Turn on memory optimize
 | |
|   /// NOTE still in development.
 | |
|   ///
 | |
|   void EnableMemoryOptim();
 | |
|   ///
 | |
|   /// \brief A boolean state telling whether the memory optimization is
 | |
|   /// activated.
 | |
|   ///
 | |
|   /// \return bool Whether the memory optimization is activated.
 | |
|   ///
 | |
|   bool enable_memory_optim() const;
 | |
| 
 | |
|   ///
 | |
|   /// \brief Turn on profiling report.
 | |
|   /// If not turned on, no profiling report will be generated.
 | |
|   ///
 | |
|   void EnableProfile();
 | |
|   ///
 | |
|   /// \brief A boolean state telling whether the profiler is activated.
 | |
|   ///
 | |
|   /// \return bool Whether the profiler is activated.
 | |
|   ///
 | |
|   bool profile_enabled() const { return with_profile_; }
 | |
| 
 | |
|   ///
 | |
|   /// \brief Mute all logs in Paddle inference.
 | |
|   ///
 | |
|   void DisableGlogInfo();
 | |
|   ///
 | |
|   /// \brief A boolean state telling whether logs in Paddle inference are muted.
 | |
|   ///
 | |
|   /// \return bool Whether logs in Paddle inference are muted.
 | |
|   ///
 | |
|   bool glog_info_disabled() const { return !with_glog_info_; }
 | |
| 
 | |
|   ///
 | |
|   /// \brief Set the AnalysisConfig to be invalid.
 | |
|   /// This is to ensure that an AnalysisConfig can only be used in one
 | |
|   /// AnalysisPredictor.
 | |
|   ///
 | |
|   void SetInValid() const { is_valid_ = false; }
 | |
|   ///
 | |
|   /// \brief A boolean state telling whether the AnalysisConfig is valid.
 | |
|   ///
 | |
|   /// \return bool Whether the AnalysisConfig is valid.
 | |
|   ///
 | |
|   bool is_valid() const { return is_valid_; }
 | |
| 
 | |
|   friend class ::paddle::AnalysisPredictor;
 | |
| 
 | |
|   ///
 | |
|   /// \brief Get a pass builder for customize the passes in IR analysis phase.
 | |
|   /// NOTE: Just for developer, not an official API, easy to be broken.
 | |
|   ///
 | |
|   ///
 | |
|   PassStrategy* pass_builder() const;
 | |
| 
 | |
|   ///
 | |
|   /// \brief Enable the GPU multi-computing stream feature.
 | |
|   /// NOTE: The current behavior of this interface is to bind the computation
 | |
|   /// stream to the thread, and this behavior may be changed in the future.
 | |
|   ///
 | |
|   void EnableGpuMultiStream();
 | |
|   void PartiallyRelease();
 | |
| 
 | |
|  protected:
 | |
|   // Update the config.
 | |
|   void Update();
 | |
| 
 | |
|   std::string SerializeInfoCache();
 | |
| 
 | |
|  protected:
 | |
|   // Model pathes.
 | |
|   std::string model_dir_;
 | |
|   mutable std::string prog_file_;
 | |
|   mutable std::string params_file_;
 | |
| 
 | |
|   // GPU related.
 | |
|   bool use_gpu_{false};
 | |
|   int device_id_{0};
 | |
|   uint64_t memory_pool_init_size_mb_{100};  // initial size is 100MB.
 | |
| 
 | |
|   bool use_cudnn_{false};
 | |
| 
 | |
|   // Padding related
 | |
|   bool use_fc_padding_{true};
 | |
| 
 | |
|   // TensorRT related.
 | |
|   bool use_tensorrt_{false};
 | |
|   // For workspace_size, refer it from here:
 | |
|   // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
 | |
|   int tensorrt_workspace_size_{1 << 30};
 | |
|   // While TensorRT allows an engine optimized for a given max batch size
 | |
|   // to run at any smaller size, the performance for those smaller
 | |
|   // sizes may not be as well-optimized. Therefore, Max batch is best
 | |
|   // equivalent to the runtime batch size.
 | |
|   int tensorrt_max_batchsize_{1};
 | |
|   //  We transform the Ops that can be converted into TRT layer in the model,
 | |
|   //  and aggregate these Ops into subgraphs for TRT execution.
 | |
|   //  We set this variable to control the minimum number of nodes in the
 | |
|   //  subgraph, 3 as default value.
 | |
|   int tensorrt_min_subgraph_size_{3};
 | |
|   Precision tensorrt_precision_mode_{Precision::kFloat32};
 | |
|   bool trt_use_static_engine_{false};
 | |
|   bool trt_use_calib_mode_{true};
 | |
|   std::map<std::string, std::vector<int>> min_input_shape_{};
 | |
|   std::map<std::string, std::vector<int>> max_input_shape_{};
 | |
|   std::map<std::string, std::vector<int>> optim_input_shape_{};
 | |
|   bool disable_trt_plugin_fp16_{false};
 | |
| 
 | |
|   // memory reuse related.
 | |
|   bool enable_memory_optim_{false};
 | |
| 
 | |
|   bool use_mkldnn_{false};
 | |
|   std::unordered_set<std::string> mkldnn_enabled_op_types_;
 | |
| 
 | |
|   bool model_from_memory_{false};
 | |
| 
 | |
|   bool enable_ir_optim_{true};
 | |
|   bool use_feed_fetch_ops_{true};
 | |
|   bool ir_debug_{false};
 | |
| 
 | |
|   bool specify_input_name_{false};
 | |
| 
 | |
|   int cpu_math_library_num_threads_{1};
 | |
| 
 | |
|   bool with_profile_{false};
 | |
| 
 | |
|   bool with_glog_info_{true};
 | |
| 
 | |
|   // A runtime cache, shouldn't be transferred to others.
 | |
|   std::string serialized_info_cache_;
 | |
| 
 | |
|   mutable std::unique_ptr<PassStrategy> pass_builder_;
 | |
| 
 | |
|   bool use_lite_{false};
 | |
|   std::vector<std::string> lite_passes_filter_;
 | |
|   std::vector<std::string> lite_ops_filter_;
 | |
|   Precision lite_precision_mode_;
 | |
| 
 | |
|   bool thread_local_stream_{false};
 | |
| 
 | |
|   // mkldnn related.
 | |
|   int mkldnn_cache_capacity_{0};
 | |
|   bool use_mkldnn_quantizer_{false};
 | |
|   std::shared_ptr<MkldnnQuantizerConfig> mkldnn_quantizer_config_;
 | |
| 
 | |
|   // If the config is already used on a predictor, it becomes invalid.
 | |
|   // Any config can only be used with one predictor.
 | |
|   // Variables held by config can take up a lot of memory in some cases.
 | |
|   // So we release the memory when the predictor is set up.
 | |
|   mutable bool is_valid_{true};
 | |
|   std::string opt_cache_dir_;
 | |
| };
 | |
| 
 | |
| }  // namespace paddle
 |