You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
138 lines
5.0 KiB
138 lines
5.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/cross_entropy2_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include "paddle/fluid/operators/cross_entropy_op_base.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class CrossEntropyOp2 : public CrossEntropyOpBase {
|
|
public:
|
|
using CrossEntropyOpBase::CrossEntropyOpBase;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
CrossEntropyOpBase::InferShape(ctx);
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("XShape"),
|
|
"Output(XShape) should be not null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto x_dims_vec = framework::vectorize(x_dims);
|
|
x_dims_vec.push_back(0);
|
|
ctx->SetOutputDim("XShape", framework::make_ddim(x_dims_vec));
|
|
ctx->ShareLoD("X", /*->*/ "XShape");
|
|
}
|
|
|
|
protected:
|
|
bool IsSoftLabel(framework::InferShapeContext* ctx) const override {
|
|
return false;
|
|
}
|
|
};
|
|
|
|
class CrossEntropyGradientOp2 : public CrossEntropyGradientOpBase {
|
|
public:
|
|
using CrossEntropyGradientOpBase::CrossEntropyGradientOpBase;
|
|
|
|
protected:
|
|
virtual framework::DDim GetXDim(framework::InferShapeContext* ctx) const {
|
|
auto x_shape = ctx->GetInputDim("XShape");
|
|
return framework::DDim(x_shape.Get(), x_shape.size() - 1);
|
|
}
|
|
|
|
virtual const char* VarNameWithXLoD() const { return "XShape"; }
|
|
|
|
virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
|
|
return false;
|
|
}
|
|
};
|
|
|
|
class CrossEntropyOpMaker2 : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(Tensor, default Tensor<float>), a tensor whose last dimension "
|
|
"size is equal to the number of classes. This input is a "
|
|
"probability computed by the previous operator, which is almost "
|
|
"always the result of a softmax operator.");
|
|
AddInput(
|
|
"Label",
|
|
"(Tensor), the tensor which represents the ground truth. It has the "
|
|
"same shape with 'X' except the last dimension. One hot Tensor.");
|
|
AddOutput("Y",
|
|
"(Tensor, default Tensor<float>), a tensor whose shape is same "
|
|
"with 'X' except that the last dimension size is 1. It "
|
|
"represents the cross entropy loss.");
|
|
AddOutput("XShape", "Temporaily variable to save shape and LoD of X.");
|
|
AddAttr<int>("ignore_index",
|
|
"(int, default -100), Specifies a target value that is"
|
|
"ignored and does not contribute to the input gradient."
|
|
"Only valid if soft_label is set to False")
|
|
.SetDefault(-100);
|
|
AddComment(R"DOC(
|
|
Hard-label CrossEntropy Operator.
|
|
|
|
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs.
|
|
The matrix's second dimension(row length) is as same as the original last
|
|
dimension, and the first dimension(column length) is the product of all other
|
|
original dimensions. Then the softmax computation will take palce on each raw
|
|
of flattened matrixs.
|
|
|
|
Only support hard label.
|
|
|
|
Both the input X and Label can carry the LoD (Level of Details) information,
|
|
or not. But the output only shares the LoD information with input X.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class CrossEntropyGradOpMaker2 : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
|
|
op->SetType("cross_entropy_grad2");
|
|
op->SetInput("Label", Input("Label"));
|
|
op->SetInput("Y", Output("Y"));
|
|
op->SetInput("XShape", Output("XShape"));
|
|
op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
|
|
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
|
op->SetAttrMap(Attrs());
|
|
return op;
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
using CPUCtx = paddle::platform::CPUDeviceContext;
|
|
|
|
REGISTER_OPERATOR(cross_entropy2, ops::CrossEntropyOp2,
|
|
ops::CrossEntropyOpMaker2, ops::CrossEntropyOpInferVarType,
|
|
ops::CrossEntropyGradOpMaker2);
|
|
REGISTER_OPERATOR(cross_entropy_grad2, ops::CrossEntropyGradientOp2);
|
|
REGISTER_OP_CPU_KERNEL(cross_entropy2,
|
|
ops::CrossEntropyOpKernel2<CPUCtx, float>,
|
|
ops::CrossEntropyOpKernel2<CPUCtx, double>);
|
|
REGISTER_OP_CPU_KERNEL(cross_entropy_grad2,
|
|
ops::CrossEntropyGradientOpKernel2<CPUCtx, float>,
|
|
ops::CrossEntropyGradientOpKernel2<CPUCtx, double>);
|