You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.cc

979 lines
34 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h"
#include <sstream>
#include <utility>
#include <vector>
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/string/pretty_log.h"
namespace paddle {
namespace framework {
namespace ir {
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<double, Eigen::Dynamic, 1>>;
using EigenVectorArrayMapFloat =
Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
using string::PrettyLogDetail;
namespace {
void UnlinkNodes(ir::Node* a, ir::Node* b) {
a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b),
a->outputs.end());
b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a),
b->inputs.end());
}
void LogCannotQuantizeOp(Node* op, const char* details = nullptr) {
std::stringstream msg_ss;
msg_ss << "Cannot quantize operator " << op->Name()
<< " (type: " << op->Op()->Type() << ", id: " << op->id() << ").";
if (details) msg_ss << " " << details;
PrettyLogDetail(msg_ss.str().c_str());
}
void LogScaleIsMissingForVarName(const std::string& name) {
VLOG(4) << "Quantization scale for the variable " << name << " is missing.";
}
void LogScaleIsMissingForVarNode(Node* node) {
LogScaleIsMissingForVarName(node->Name());
}
void LogQuantizationDisabled(Node* op) {
std::stringstream msg_ss;
VLOG(4) << "Qantization skipped for operator " << op->Name()
<< " (type: " << op->Op()->Type() << ", id: " << op->id()
<< "). Attribute mkldnn_data_type != \"int8\".";
}
} // namespace
enum { U8_MAX = 255, S8_MAX = 127 };
void CPUQuantizePass::QuantizeInput(Graph* g, Node* op, Node* input,
std::string input_name, double scale_to_one,
bool is_input_unsigned,
std::string scale_attr_name, float shift,
std::string shift_attr_name) const {
auto inputs = op->Op()->InputNames();
bool name_found =
std::find(inputs.begin(), inputs.end(), input_name) != inputs.end();
PADDLE_ENFORCE_EQ(name_found, true,
platform::errors::InvalidArgument(
"Var(%s) isn't the input of the %s operator.",
input_name, op->Op()->Type()));
unsigned max = is_input_unsigned ? U8_MAX : S8_MAX;
float scale = scale_to_one * max;
// Create quantize output variable
VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc);
// create a quantize op node
OpDesc q_desc;
q_desc.SetType("quantize");
q_desc.SetInput("Input", std::vector<std::string>({input->Name()}));
q_desc.SetOutput("Output",
std::vector<std::string>({quantize_out_node->Name()}));
q_desc.SetAttr("Scale", scale);
q_desc.SetAttr("Shift", shift);
q_desc.SetAttr("is_negative_input", !is_input_unsigned);
q_desc.SetAttr("output_format",
Has("data_layout") ? Get<std::string>("data_layout") : "NHWC");
auto quantize_op = g->CreateOpNode(&q_desc); // OpDesc will be copied.
// update op's input
op->Op()->SetInput(input_name,
std::vector<std::string>({quantize_out_node->Name()}));
// link quantize op
UnlinkNodes(input, op);
IR_NODE_LINK_TO(input, quantize_op);
IR_NODE_LINK_TO(quantize_op, quantize_out_node);
IR_NODE_LINK_TO(quantize_out_node, op);
if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
if (!shift_attr_name.empty()) op->Op()->SetAttr(shift_attr_name, shift);
}
void CPUQuantizePass::QuantizeInputs(Graph* g, Node* op, std::string input_name,
bool are_inputs_unsigned,
std::string scale_attr_name, float shift,
std::string shift_attr_name) const {
auto inputs = op->inputs;
auto output = op->outputs[0];
PADDLE_ENFORCE_GE(inputs.size(), 1,
platform::errors::InvalidArgument(
"OP(%s)'s inputs(%d) must be equal or greater than 1.",
op->Name(), inputs.size()));
PADDLE_ENFORCE_EQ(op->outputs.size(), 1,
platform::errors::InvalidArgument(
"OP(%s)'s outputs(%d) must be equal to 1.", op->Name(),
op->outputs.size()));
// create a quantize op desc prototype
OpDesc q_desc;
q_desc.SetType("quantize");
std::vector<Node*> quantize_out_nodes(inputs.size());
std::vector<std::string> quantize_out_node_names(inputs.size());
double scale_out = GetScaleValueForNode(output);
unsigned max = are_inputs_unsigned ? U8_MAX : S8_MAX;
float scale = scale_out * max;
for (size_t i = 0; i < inputs.size(); i++) {
// Create quantize output variable
VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc);
quantize_out_node_names[i] = quantize_out_nodes[i]->Name();
q_desc.SetAttr("Scale", scale);
q_desc.SetAttr("Shift", shift);
q_desc.SetInput("Input", std::vector<std::string>({inputs[i]->Name()}));
q_desc.SetOutput("Output",
std::vector<std::string>({quantize_out_node_names[i]}));
q_desc.SetAttr("is_negative_input", !are_inputs_unsigned);
auto quantize_op = g->CreateOpNode(&q_desc); // OpDesc will be copied.
// link quantize op
UnlinkNodes(inputs[i], op);
IR_NODE_LINK_TO(inputs[i], quantize_op);
IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]);
IR_NODE_LINK_TO(quantize_out_nodes[i], op);
}
// update op's input
op->Op()->SetInput(input_name, quantize_out_node_names);
if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
if (!shift_attr_name.empty()) op->Op()->SetAttr(shift_attr_name, shift);
}
void CPUQuantizePass::DequantizeOutput(Graph* g, Node* op, Node* output,
std::string output_name,
double scale_to_one, bool is_unsigned,
std::string scale_attr_name) const {
auto outputs = op->Op()->OutputNames();
bool name_found =
std::find(outputs.begin(), outputs.end(), output_name) != outputs.end();
PADDLE_ENFORCE_EQ(name_found, true,
platform::errors::InvalidArgument(
"Var(%s) isn't the output of the %s operator.",
output_name, op->Op()->Type()));
unsigned max = is_unsigned ? U8_MAX : S8_MAX;
float scale = scale_to_one * max;
// Create dequantize input variable
VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);
// create a dequantize op node for output.
OpDesc deq_desc;
deq_desc.SetType("dequantize");
deq_desc.SetInput("Input",
std::vector<std::string>({dequantize_in_node->Name()}));
deq_desc.SetOutput("Output", std::vector<std::string>({output->Name()}));
deq_desc.SetAttr("Scale", scale);
auto dequantize_op = g->CreateOpNode(&deq_desc); // OpDesc will be copied.
// update op's output
op->Op()->SetOutput(output_name,
std::vector<std::string>({dequantize_in_node->Name()}));
// link dequantize op
UnlinkNodes(op, output);
IR_NODE_LINK_TO(op, dequantize_in_node);
IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
IR_NODE_LINK_TO(dequantize_op, output);
if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}
bool CPUQuantizePass::AreScalesPresentForVarNames(
std::vector<std::string> names) const {
auto& scales = Get<VarQuantScale>("quant_var_scales");
bool present = true;
for (auto name : names) {
if (scales.find(name) == scales.end()) {
present = false;
LogScaleIsMissingForVarName(name);
}
}
return present;
}
bool CPUQuantizePass::AreScalesPresentForNodes(
std::initializer_list<Node*> nodes) const {
auto& scales = Get<VarQuantScale>("quant_var_scales");
bool present = true;
for (auto node : nodes) {
if (scales.count(node->Name()) == 0) {
present = false;
LogScaleIsMissingForVarNode(node);
}
}
return present;
}
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataByName(
const std::string& name) const {
auto& scales = Get<VarQuantScale>("quant_var_scales");
return scales.at(name);
}
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataForNode(
const Node* node) const {
return GetScaleDataByName(node->Name());
}
LoDTensor CPUQuantizePass::GetScaleTensorByName(const std::string& name) const {
return GetScaleDataByName(name).second;
}
LoDTensor CPUQuantizePass::GetScaleTensorForNode(const Node* node) const {
return GetScaleDataForNode(node).second;
}
double CPUQuantizePass::GetScaleValueForNode(const Node* node,
bool* is_unsigned) const {
auto scale_data = GetScaleDataForNode(node);
if (is_unsigned != nullptr) *is_unsigned = scale_data.first;
return scale_data.second.data<double>()[0];
}
bool CPUQuantizePass::IsOpDequantized(const Node* node) const {
return node->Op()->Type() == "dequantize" ||
platform::HasOpINT8DataType(node->Op());
}
bool CPUQuantizePass::IsOpQuantized(const Node* node) const {
return node->Op()->Type() == "quantize" ||
platform::HasOpINT8DataType(node->Op());
}
void CPUQuantizePass::QuantizeConv(Graph* graph,
bool with_residual_data) const {
GraphPatternDetector gpd;
auto pattern = gpd.mutable_pattern();
patterns::ConvResidual conv_pattern{pattern, name_scope_};
conv_pattern(with_residual_data);
int quantize_conv_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "Quantize conv2d op";
GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern);
// skip if should not be quantized
if (!platform::HasOpINT8DataType(conv_op->Op())) {
LogQuantizationDisabled(conv_op);
return;
}
GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern);
GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);
auto has_output_scale = AreScalesPresentForNodes({conv_output});
if (with_residual_data && !has_output_scale) {
LogCannotQuantizeOp(conv_op,
"Conv op with ResidualData input cannot be quantized "
"without output scale.");
return;
}
if (with_residual_data) {
GET_IR_NODE_FROM_SUBGRAPH(conv_residual_data, conv_residual_data,
conv_pattern);
if (!AreScalesPresentForNodes(
{conv_input, conv_filter, conv_residual_data})) {
LogCannotQuantizeOp(conv_op);
return;
}
bool is_residual_unsigned{false};
auto residual_scale =
GetScaleValueForNode(conv_residual_data, &is_residual_unsigned);
QuantizeInput(g, conv_op, conv_residual_data, "ResidualData",
residual_scale, is_residual_unsigned, "Scale_in_eltwise");
} else {
if (!AreScalesPresentForNodes({conv_input, conv_filter})) {
LogCannotQuantizeOp(conv_op);
return;
}
}
bool is_input_unsigned{false};
auto input_scale = GetScaleValueForNode(conv_input, &is_input_unsigned);
QuantizeInput(g, conv_op, conv_input, "Input", input_scale,
is_input_unsigned, "Scale_in");
auto filter_scale_tensor = GetScaleTensorForNode(conv_filter);
EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data<double>(),
filter_scale_tensor.numel()};
eigen_tensor *= static_cast<double>(S8_MAX);
std::vector<float> filter_scale{
filter_scale_tensor.data<double>(),
filter_scale_tensor.data<double>() + filter_scale_tensor.numel()};
conv_op->Op()->SetAttr("Scale_weights", filter_scale);
// if quantization scale is missing for output tensor, return fp32 data
if (has_output_scale) {
bool is_output_unsigned{false};
auto output_scale =
GetScaleValueForNode(conv_output, &is_output_unsigned);
DequantizeOutput(g, conv_op, conv_output, "Output", output_scale,
is_output_unsigned, "Scale_out");
} else {
conv_op->Op()->SetAttr("force_fp32_output", true);
}
// change threshold in bounded ReLu
if (conv_op->Op()->GetAttrIfExists<std::string>("fuse_activation") ==
"relu6") {
float scale_out =
BOOST_GET_CONST(float, conv_op->Op()->GetAttr("Scale_out"));
float threshold =
BOOST_GET_CONST(float, conv_op->Op()->GetAttr("fuse_alpha"));
conv_op->Op()->SetAttr("fuse_alpha", scale_out * threshold);
}
++quantize_conv_count;
};
gpd(graph, handler);
AddStatis(quantize_conv_count);
std::stringstream msg_ss;
msg_ss << "--- quantized " << quantize_conv_count << " conv2d ops";
if (with_residual_data) msg_ss << " with residual connection";
PrettyLogDetail(msg_ss.str().c_str());
}
void CPUQuantizePass::QuantizeFc(Graph* graph) const {
GraphPatternDetector gpd;
auto pattern = gpd.mutable_pattern();
patterns::FCMKLDNN fc_pattern{pattern, name_scope_};
auto* fc_input = gpd.mutable_pattern()
->NewNode("fc_quantizer/input")
->AsInput()
->assert_is_op_input("fc", "Input");
fc_pattern(fc_input, false);
int quantize_fc_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "Quantize fc op";
GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_pattern);
// skip if should not be quantized
if (!platform::HasOpINT8DataType(fc->Op())) {
LogQuantizationDisabled(fc);
return;
}
if (!fc->Op()->GetAttrIfExists<bool>("use_mkldnn")) {
return;
}
GET_IR_NODE_FROM_SUBGRAPH(weights, weights, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(input, input, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(output, output, fc_pattern);
if (!AreScalesPresentForNodes({input, weights})) {
LogCannotQuantizeOp(fc);
return;
}
bool is_input_unsigned{false};
auto input_scale = GetScaleValueForNode(input, &is_input_unsigned);
QuantizeInput(g, fc, input, "Input", input_scale, is_input_unsigned,
"Scale_in");
auto weight_scale_tensor = GetScaleTensorForNode(weights);
EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
weight_scale_tensor.numel()};
eigen_tensor *= static_cast<double>(S8_MAX);
std::vector<float> filter_scale{
weight_scale_tensor.data<double>(),
weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};
fc->Op()->SetAttr("Scale_weights", filter_scale);
// if quantization scale is missing for output tensor, return fp32 data
if (AreScalesPresentForNodes({output})) {
bool is_output_unsigned{false};
auto output_scale = GetScaleValueForNode(output, &is_output_unsigned);
DequantizeOutput(g, fc, output, "Out", output_scale, is_output_unsigned,
"Scale_out");
} else {
fc->Op()->SetAttr("force_fp32_output", true);
}
++quantize_fc_count;
};
gpd(graph, handler);
AddStatis(quantize_fc_count);
std::stringstream msg_ss;
msg_ss << "--- quantized " << quantize_fc_count << " fc ops";
PrettyLogDetail(msg_ss.str().c_str());
}
void CPUQuantizePass::QuantizePool(Graph* graph) const {
GraphPatternDetector gpd;
auto pattern = gpd.mutable_pattern();
patterns::Pool pool_pattern{pattern, name_scope_};
pool_pattern();
int quantize_pool_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "Quantize pool2d op";
GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern);
// skip if should not be quantized
if (!platform::HasOpINT8DataType(pool_op->Op())) {
LogQuantizationDisabled(pool_op);
return;
}
GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern);
GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern);
if (!AreScalesPresentForNodes({pool_input, pool_output})) {
LogCannotQuantizeOp(pool_op);
return;
}
bool is_input_unsigned{false};
auto input_scale = GetScaleValueForNode(pool_input, &is_input_unsigned);
QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned);
bool is_output_unsigned{false};
auto output_scale = GetScaleValueForNode(pool_output, &is_output_unsigned);
DequantizeOutput(g, pool_op, pool_output, "Out", output_scale,
is_output_unsigned);
++quantize_pool_count;
};
gpd(graph, handler);
AddStatis(quantize_pool_count);
PrettyLogDetail("--- quantized %d pool2d ops", quantize_pool_count);
}
void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
GraphPatternDetector gpd;
auto pattern = gpd.mutable_pattern();
patterns::Concat concat_pattern{pattern, name_scope_};
concat_pattern();
int quantize_concat_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "Quantize concat op";
GET_IR_NODE_FROM_SUBGRAPH(concat_op, concat_op, concat_pattern);
// skip if should not be quantized
if (!platform::HasOpINT8DataType(concat_op->Op())) {
LogQuantizationDisabled(concat_op);
return;
}
GET_IR_NODE_FROM_SUBGRAPH(concat_out, concat_out, concat_pattern);
if (!AreScalesPresentForNodes({concat_out})) {
LogCannotQuantizeOp(concat_op);
return;
}
// if all inputs were unsigned, then the output was set to unsigned
// during the scale calculation step
bool are_all_inputs_unsigned{false};
auto output_scale =
GetScaleValueForNode(concat_out, &are_all_inputs_unsigned);
QuantizeInputs(g, concat_op, "X", are_all_inputs_unsigned);
DequantizeOutput(g, concat_op, concat_out, "Out", output_scale,
are_all_inputs_unsigned);
++quantize_concat_count;
};
gpd(graph, handler);
AddStatis(quantize_concat_count);
PrettyLogDetail("--- quantized %d concat ops", quantize_concat_count);
}
void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
GraphPatternDetector gpd;
auto pattern = gpd.mutable_pattern();
patterns::PriorBox prior_box_pattern{pattern, name_scope_};
prior_box_pattern();
int quantize_prior_box_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "Quantize prior_box op";
GET_IR_NODE_FROM_SUBGRAPH(prior_box_op, prior_box_op, prior_box_pattern);
// skip if should not be quantized
if (!platform::HasOpINT8DataType(prior_box_op->Op())) {
LogQuantizationDisabled(prior_box_op);
return;
}
GET_IR_NODE_FROM_SUBGRAPH(prior_box_input, prior_box_input,
prior_box_pattern);
if (!AreScalesPresentForNodes({prior_box_input})) {
LogCannotQuantizeOp(prior_box_op);
return;
}
bool is_input_unsigned{false};
auto input_scale =
GetScaleValueForNode(prior_box_input, &is_input_unsigned);
QuantizeInput(g, prior_box_op, prior_box_input, "Input", input_scale,
is_input_unsigned);
++quantize_prior_box_count;
};
gpd(graph, handler);
AddStatis(quantize_prior_box_count);
PrettyLogDetail("--- quantized %d prior_box ops",
quantize_prior_box_count);
}
void CPUQuantizePass::QuantizeTranspose(Graph* graph) const {
GraphPatternDetector gpd;
auto pattern = gpd.mutable_pattern();
patterns::Transpose transpose_pattern{pattern, name_scope_};
transpose_pattern();
int quantize_transpose_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "Quantize transpose op";
GET_IR_NODE_FROM_SUBGRAPH(transpose_op, transpose_op, transpose_pattern);
// skip if should not be quantized
if (!platform::HasOpINT8DataType(transpose_op->Op())) {
LogQuantizationDisabled(transpose_op);
return;
}
GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, transpose_pattern);
GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, transpose_pattern);
// skip if prev op and next op is not quantized
if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
return;
}
GET_IR_NODE_FROM_SUBGRAPH(transpose_in, transpose_in, transpose_pattern);
GET_IR_NODE_FROM_SUBGRAPH(transpose_out, transpose_out, transpose_pattern);
if (!AreScalesPresentForNodes({transpose_in, transpose_out})) {
LogCannotQuantizeOp(transpose_op);
return;
}
bool is_input_unsigned{false};
auto input_scale = GetScaleValueForNode(transpose_in, &is_input_unsigned);
QuantizeInput(g, transpose_op, transpose_in, "X", input_scale,
is_input_unsigned);
bool is_output_unsigned{false};
auto output_scale =
GetScaleValueForNode(transpose_out, &is_output_unsigned);
DequantizeOutput(g, transpose_op, transpose_out, "Out", output_scale,
is_output_unsigned);
++quantize_transpose_count;
};
gpd(graph, handler);
AddStatis(quantize_transpose_count);
PrettyLogDetail("--- quantized %d transpose ops",
quantize_transpose_count);
}
void CPUQuantizePass::QuantizeReshape(Graph* graph) const {
GraphPatternDetector gpd;
auto pattern = gpd.mutable_pattern();
patterns::Reshape reshape_pattern{pattern, name_scope_};
reshape_pattern();
int quantize_reshape_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "Quantize reshape op";
GET_IR_NODE_FROM_SUBGRAPH(reshape_op, reshape_op, reshape_pattern);
// skip if should not be quantized
if (!platform::HasOpINT8DataType(reshape_op->Op())) {
LogQuantizationDisabled(reshape_op);
return;
}
GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, reshape_pattern);
GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, reshape_pattern);
// skip if prev op and next op is not quantized
if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
return;
}
GET_IR_NODE_FROM_SUBGRAPH(reshape_in, reshape_in, reshape_pattern);
GET_IR_NODE_FROM_SUBGRAPH(reshape_out, reshape_out, reshape_pattern);
if (!AreScalesPresentForNodes({reshape_in, reshape_out})) {
LogCannotQuantizeOp(reshape_op);
return;
}
bool is_input_unsigned{false};
auto input_scale = GetScaleValueForNode(reshape_in, &is_input_unsigned);
QuantizeInput(g, reshape_op, reshape_in, "X", input_scale,
is_input_unsigned);
bool is_output_unsigned{false};
auto output_scale = GetScaleValueForNode(reshape_out, &is_output_unsigned);
DequantizeOutput(g, reshape_op, reshape_out, "Out", output_scale,
is_output_unsigned);
++quantize_reshape_count;
};
gpd(graph, handler);
AddStatis(quantize_reshape_count);
PrettyLogDetail("--- quantized %d reshape ops", quantize_reshape_count);
}
void CPUQuantizePass::QuantizeMatmul(Graph* graph) const {
GraphPatternDetector gpd;
auto pattern = gpd.mutable_pattern();
patterns::MatmulWithInputOps matmul_pattern{pattern, name_scope_};
matmul_pattern();
int quantize_matmul_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "Quantize matmul op";
GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul_op, matmul_pattern);
// skip if should not be quantized
if (!platform::HasOpINT8DataType(matmul_op->Op())) {
LogQuantizationDisabled(matmul_op);
return;
}
GET_IR_NODE_FROM_SUBGRAPH(prev_op_x, prev_op_x, matmul_pattern);
GET_IR_NODE_FROM_SUBGRAPH(prev_op_y, prev_op_y, matmul_pattern);
// skip if prev ops are not quantized
if (!IsOpDequantized(prev_op_x) || !IsOpDequantized(prev_op_y)) {
return;
}
GET_IR_NODE_FROM_SUBGRAPH(matmul_in_x, matmul_in_x, matmul_pattern);
GET_IR_NODE_FROM_SUBGRAPH(matmul_in_y, matmul_in_y, matmul_pattern);
GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, matmul_pattern);
if (!AreScalesPresentForNodes({matmul_in_x, matmul_in_y})) {
LogCannotQuantizeOp(matmul_op);
return;
}
bool is_x_unsigned{false}, is_y_unsigned{false};
auto input_x_scale = GetScaleValueForNode(matmul_in_x, &is_x_unsigned);
auto input_y_scale = GetScaleValueForNode(matmul_in_y, &is_y_unsigned);
PADDLE_ENFORCE_EQ(is_x_unsigned, is_y_unsigned,
platform::errors::InvalidArgument(
"Matmul inputs should have the same "
"attribute of signed/unsigned, but they "
"are different: x(%d), y(%d).",
is_x_unsigned, is_y_unsigned));
QuantizeInput(g, matmul_op, matmul_in_x, "X", input_x_scale, is_x_unsigned,
"Scale_x");
QuantizeInput(g, matmul_op, matmul_in_y, "Y", input_y_scale, is_y_unsigned,
"Scale_y");
// if quantization scale is missing for output tensor, return fp32 data
if (AreScalesPresentForNodes({matmul_out})) {
bool is_output_unsigned{false};
auto output_scale = GetScaleValueForNode(matmul_out, &is_output_unsigned);
DequantizeOutput(g, matmul_op, matmul_out, "Out", output_scale,
is_output_unsigned, "Scale_out");
} else {
matmul_op->Op()->SetAttr("force_fp32_output", true);
}
++quantize_matmul_count;
};
gpd(graph, handler);
AddStatis(quantize_matmul_count);
PrettyLogDetail("--- quantized %d matmul ops", quantize_matmul_count);
}
void CPUQuantizePass::QuantizeElementwiseAdd(Graph* graph) const {
GraphPatternDetector gpd;
auto pattern = gpd.mutable_pattern();
patterns::ElementwiseAdd elementwise_add_pattern{pattern, name_scope_};
elementwise_add_pattern(
pattern->NewNode(elementwise_add_pattern.elementwise_add_x_repr()),
pattern->NewNode(elementwise_add_pattern.elementwise_add_y_repr()));
int quantize_elementwise_add_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "Quantize elementwise_add op";
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_op, elementwise_add_op,
elementwise_add_pattern);
// skip if should not be quantized
if (!platform::HasOpINT8DataType(elementwise_add_op->Op())) {
LogQuantizationDisabled(elementwise_add_op);
return;
}
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_x, elementwise_add_x,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_y, elementwise_add_y,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_out, elementwise_add_out,
elementwise_add_pattern);
if (!AreScalesPresentForNodes({elementwise_add_x, elementwise_add_y})) {
LogCannotQuantizeOp(elementwise_add_op);
return;
}
bool is_x_unsigned{false}, is_y_unsigned{false};
auto input_x_scale =
GetScaleValueForNode(elementwise_add_x, &is_x_unsigned);
auto input_y_scale =
GetScaleValueForNode(elementwise_add_y, &is_y_unsigned);
// TODO(sfraczek): add support for different signness
if (is_x_unsigned != is_y_unsigned) {
LogCannotQuantizeOp(elementwise_add_op,
"ElementwiseAdd inputs must be of the same type.");
return;
}
QuantizeInput(g, elementwise_add_op, elementwise_add_x, "X", input_x_scale,
is_x_unsigned, "Scale_x");
QuantizeInput(g, elementwise_add_op, elementwise_add_y, "Y", input_y_scale,
is_y_unsigned, "Scale_y");
// if quantization scale is missing for output tensor, return fp32 data
if (AreScalesPresentForNodes({elementwise_add_out})) {
bool is_output_unsigned{false};
auto output_scale =
GetScaleValueForNode(elementwise_add_out, &is_output_unsigned);
DequantizeOutput(g, elementwise_add_op, elementwise_add_out, "Out",
output_scale, is_output_unsigned, "Scale_out");
} else {
elementwise_add_op->Op()->SetAttr("force_fp32_output", true);
}
++quantize_elementwise_add_count;
};
gpd(graph, handler);
AddStatis(quantize_elementwise_add_count);
PrettyLogDetail("--- quantized %d elementwise_add ops",
quantize_elementwise_add_count);
}
void CPUQuantizePass::QuantizeFusionGru(Graph* graph) const {
GraphPatternDetector gpd;
patterns::FusionGru pattern{gpd.mutable_pattern(), name_scope_};
pattern();
int quantize_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "Quantize fusion_gru op";
GET_IR_NODE_FROM_SUBGRAPH(op, op, pattern);
// skip if should not be quantized
if (!platform::HasOpINT8DataType(op->Op())) {
LogQuantizationDisabled(op);
return;
}
GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
GET_IR_NODE_FROM_SUBGRAPH(weight_h, weight_h, pattern);
GET_IR_NODE_FROM_SUBGRAPH(weight_x, weight_x, pattern);
GET_IR_NODE_FROM_SUBGRAPH(out, out, pattern);
if (!AreScalesPresentForNodes({x, weight_h, weight_x})) {
LogCannotQuantizeOp(op);
return;
}
bool is_x_unsigned{false};
auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);
double input_x_shift{128.};
if (is_x_unsigned) input_x_shift = 0.;
QuantizeInput(g, op, x, "X", input_x_scale, is_x_unsigned, "Scale_data",
input_x_shift, "Shift_data");
auto weight_scale_tensor = GetScaleTensorForNode(weight_x);
EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
weight_scale_tensor.numel()};
eigen_tensor *= static_cast<double>(S8_MAX);
std::vector<float> scale_weights{
weight_scale_tensor.data<double>(),
weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};
op->Op()->SetAttr("Scale_weights", scale_weights);
// return fp32 data
op->Op()->SetAttr("force_fp32_output", true);
++quantize_count;
};
gpd(graph, handler);
AddStatis(quantize_count);
PrettyLogDetail("--- quantized %d fusion_gru ops", quantize_count);
}
void CPUQuantizePass::QuantizeMultiGru(Graph* graph) const {
GraphPatternDetector gpd;
patterns::MultiGru pattern{gpd.mutable_pattern(), name_scope_};
pattern();
int quantize_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "Quantize multi_gru op";
GET_IR_NODE_FROM_SUBGRAPH(gru, gru, pattern);
// skip if should not be quantized
if (!platform::HasOpINT8DataType(gru->Op())) {
LogQuantizationDisabled(gru);
return;
}
GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
GET_IR_NODE_FROM_SUBGRAPH(wx, wx, pattern);
GET_IR_NODE_FROM_SUBGRAPH(h, h, pattern);
auto wx_names = gru->Op()->Input("WeightX");
if (!AreScalesPresentForNodes({x}) ||
!AreScalesPresentForVarNames(wx_names)) {
LogCannotQuantizeOp(gru);
return;
}
bool is_x_unsigned{false};
auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);
double input_x_shift{128.};
if (is_x_unsigned) input_x_shift = 0.;
QuantizeInput(g, gru, x, "X", input_x_scale, is_x_unsigned, "Scale_data",
input_x_shift, "Shift_data");
auto* scope = param_scope();
int wx_size = wx_names.size();
std::vector<std::string> w_scale_var_names;
for (int i = 0; i < wx_size; ++i) {
auto scale_tensor_src = GetScaleTensorByName(wx_names[i]);
EigenVectorArrayMap eigen_tensor_src{scale_tensor_src.data<double>(),
scale_tensor_src.numel()};
VarDesc scale_var_desc(patterns::PDNodeName("multi_gru", "w_scale"));
scale_var_desc.SetShape(framework::vectorize(scale_tensor_src.dims()));
scale_var_desc.SetDataType(proto::VarType::FP32);
scale_var_desc.SetLoDLevel(scale_tensor_src.lod().size());
scale_var_desc.SetPersistable(true);
auto* w_scale_node = g->CreateVarNode(&scale_var_desc);
auto* w_scale_tensor_dst =
scope->Var(w_scale_node->Name())->GetMutable<LoDTensor>();
w_scale_tensor_dst->Resize(scale_tensor_src.dims());
auto* dst_data =
w_scale_tensor_dst->mutable_data<float>(platform::CPUPlace());
EigenVectorArrayMapFloat eigen_tensor_dst{dst_data,
w_scale_tensor_dst->numel()};
eigen_tensor_dst =
eigen_tensor_src.cast<float>() * static_cast<float>(S8_MAX);
w_scale_var_names.push_back(w_scale_node->Name());
IR_NODE_LINK_TO(w_scale_node, gru);
}
gru->Op()->SetInput("Scale_weights", w_scale_var_names);
// return fp32 data
gru->Op()->SetAttr("force_fp32_output", true);
++quantize_count;
};
gpd(graph, handler);
AddStatis(quantize_count);
PrettyLogDetail("--- quantized %d multi_gru ops", quantize_count);
}
void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
VLOG(3) << "Quantizing the graph.";
PADDLE_ENFORCE_NOT_NULL(
graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
FusePassBase::Init(name_scope_, graph);
PADDLE_ENFORCE_NOT_NULL(param_scope(), platform::errors::InvalidArgument(
"Scope cannot be nullptr."));
QuantizeConv(graph, false /* with_residual_data */);
QuantizeConv(graph, true /* with_residual_data */);
QuantizePool(graph);
QuantizeConcat(graph);
QuantizePriorBox(graph);
QuantizeTranspose(graph);
QuantizeFc(graph);
QuantizeReshape(graph);
QuantizeMatmul(graph);
QuantizeElementwiseAdd(graph);
QuantizeFusionGru(graph);
QuantizeMultiGru(graph);
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass)
.RequirePassAttr("quant_var_scales");