You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
7.3 KiB
194 lines
7.3 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/space_to_depth_op.h"
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
class SpaceToDepthOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of SpaceToDepthOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of SpaceToDepthOp should not be null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 4, "input should be a 4D tensor");
|
|
auto blocksize = ctx->Attrs().Get<int64_t>("blocksize");
|
|
|
|
PADDLE_ENFORCE_GT(blocksize, 1, "The blocksize should be Greater than 1");
|
|
if (ctx->IsRuntime()) {
|
|
PADDLE_ENFORCE_GT(x_dims[1], 0, "input channel should be Greater than 0");
|
|
PADDLE_ENFORCE_GT(x_dims[2], 0, "input Height should be Greater than 0");
|
|
PADDLE_ENFORCE_GT(x_dims[3], 0, "input Width should be Greater than 0");
|
|
|
|
PADDLE_ENFORCE_EQ(x_dims[1] % (blocksize * blocksize), 0,
|
|
"input channel should be divisible of the square of "
|
|
"SpaceToDepthOp blocksize");
|
|
PADDLE_ENFORCE_EQ(x_dims[2] % (blocksize), 0,
|
|
"input Height should be divisible of the square of "
|
|
"SpaceToDepthOp blocksize");
|
|
PADDLE_ENFORCE_EQ(x_dims[3] % (blocksize), 0,
|
|
"input Width should be divisible of the square of "
|
|
"SpaceToDepthOp blocksize");
|
|
} else {
|
|
if (x_dims[1] != -1) {
|
|
PADDLE_ENFORCE_GT(x_dims[1], 0,
|
|
"input channel should be Greater than 0");
|
|
PADDLE_ENFORCE_EQ(x_dims[1] % (blocksize * blocksize), 0,
|
|
"input channel should be divisible of the square of "
|
|
"SpaceToDepthOp blocksize");
|
|
}
|
|
if (x_dims[2] != -1) {
|
|
PADDLE_ENFORCE_GT(x_dims[2], 0,
|
|
"input Height should be Greater than 0");
|
|
PADDLE_ENFORCE_EQ(x_dims[2] % (blocksize), 0,
|
|
"input Height should be divisible of the square of "
|
|
"SpaceToDepthOp blocksize");
|
|
}
|
|
|
|
if (x_dims[3] != -1) {
|
|
PADDLE_ENFORCE_GT(x_dims[3], 0, "input Width should be Greater than 0");
|
|
|
|
PADDLE_ENFORCE_EQ(x_dims[3] % (blocksize), 0,
|
|
"input Width should be divisible of the square of "
|
|
"SpaceToDepthOp blocksize");
|
|
}
|
|
}
|
|
|
|
VLOG(3) << "SpaceToDepthOp operator x.shape=" << x_dims
|
|
<< "Attribute blocksize" << blocksize << std::endl;
|
|
|
|
std::vector<int64_t> output_shape(4, 0); // [B,C,H,W]
|
|
output_shape[0] = x_dims[0];
|
|
output_shape[1] = x_dims[1] * blocksize * blocksize;
|
|
output_shape[2] = x_dims[2] / blocksize;
|
|
output_shape[3] = x_dims[3] / blocksize;
|
|
|
|
auto out_dims = framework::make_ddim(output_shape);
|
|
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
|
|
if (x_dims[0] == out_dims[0]) {
|
|
// Only pass LoD when the first dimension of output and Input(X)
|
|
// are the same.
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
}
|
|
};
|
|
|
|
class SpaceToDepthOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(Tensor). The input should be a 4D tensor B * C * W * H of "
|
|
"SpaceToDepthOp "
|
|
"operator.");
|
|
AddOutput("Out",
|
|
"(Tensor), The output should be a 4D tensor B * C2 * W2 * H2 of "
|
|
"SpaceToDepthOp operator.");
|
|
AddAttr<int64_t>(
|
|
"blocksize",
|
|
"(int64_t, default 2) blocksize used to do change Space To Depth.")
|
|
.SetDefault(2)
|
|
.GreaterThan(1);
|
|
AddComment(R"DOC(
|
|
reorg operator used in Yolo v2.
|
|
The equation is: C2 = C1/blocksize * blocksize, W2 = W1 * blocksize + offset % blocksize, H2 = H1 * blocksize + offset / blocksize,
|
|
|
|
Reshape Input(X) into the shape according to Attr(blocksize). The
|
|
data in Input(X) are unchanged.
|
|
|
|
Examples:
|
|
|
|
1. Given a 4-D tensor Input(X) with a shape [128, 2048, 26, 26], and the blocksize is 2, the reorg operator will transform Input(X)
|
|
into a 4-D tensor with shape [128, 2048, 13, 13] and leaving Input(X)'s data unchanged.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(SpaceToDepthGradOpNoBuffer, "X");
|
|
|
|
class SpaceToDepthGradOpDescMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
|
|
|
|
op->SetType("space_to_depth_grad");
|
|
|
|
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
|
op->SetInput("X", Input("X"));
|
|
|
|
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
|
|
|
op->SetAttrMap(Attrs());
|
|
return op;
|
|
}
|
|
};
|
|
|
|
class SpaceToDepthGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) shouldn't be null.");
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
ctx.Input<Tensor>(framework::GradVarName("Out"))->type(),
|
|
ctx.GetPlace());
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(space_to_depth, ops::SpaceToDepthOp, ops::SpaceToDepthOpMaker,
|
|
ops::SpaceToDepthGradOpDescMaker);
|
|
REGISTER_OPERATOR(space_to_depth_grad, ops::SpaceToDepthGradOp,
|
|
ops::SpaceToDepthGradOpNoBuffer);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
space_to_depth,
|
|
ops::SpaceToDepthKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SpaceToDepthKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::SpaceToDepthKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
space_to_depth_grad,
|
|
ops::SpaceToDepthGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SpaceToDepthGradKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::SpaceToDepthGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
|