You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/dygraph/math_op_patch.py

274 lines
10 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from .. import core
from ..framework import Variable, convert_np_dtype_to_dtype_, _varbase_creator
from ..layers.layer_function_generator import OpProtoHolder
from . import no_grad
import numpy as np
import six
_supported_int_dtype_ = [
core.VarDesc.VarType.UINT8,
core.VarDesc.VarType.INT8,
core.VarDesc.VarType.INT16,
core.VarDesc.VarType.INT32,
core.VarDesc.VarType.INT64,
]
_already_patch_varbase = False
def monkey_patch_math_varbase():
"""
Similar to monkey_patch_variable.
The difference is, in dygraph mode, use auto-generated op functions for better performance.
"""
@no_grad
def create_tensor(value, dtype, shape):
out = _varbase_creator(dtype=dtype)
out = core.ops.fill_constant(out, 'dtype', dtype, 'shape', shape,
'value', value, 'force_cpu', False)
out.stop_gradient = True
return out
def create_scalar(value, dtype):
return create_tensor(value, dtype, shape=[1])
def astype(self, dtype):
"""
Cast a Tensor to a specified data type.
Args:
dtype: The target data type.
Returns:
Tensor: a new Tensor with target dtype
Examples:
.. code-block:: python
import paddle
import numpy as np
original_tensor = paddle.ones([2, 2])
print("original tensor's dtype is: {}".format(original_tensor.dtype))
new_tensor = original_tensor.astype('float32')
print("new tensor's dtype is: {}".format(new_tensor.dtype))
"""
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
return core.ops.cast(self, 'in_dtype', self.dtype, 'out_dtype', dtype)
def _scalar_elementwise_op_(var, scale, bias):
return core.ops.scale(var, 'scale', scale, 'bias', bias)
def _neg_(var):
return _scalar_elementwise_op_(var, -1.0, 0.0)
def _float_(var):
numel = np.prod(var.shape)
assert numel == 1, "only one element variable can be converted to float."
tensor = var.value().get_tensor()
assert tensor._is_initialized(), "variable's tensor is not initialized"
return float(var.numpy().flatten()[0])
def _long_(var):
numel = np.prod(var.shape)
assert numel == 1, "only one element variable can be converted to long."
tensor = var.value().get_tensor()
assert tensor._is_initialized(), "variable's tensor is not initialized"
if six.PY2:
return long(var.numpy().flatten()[0])
else:
return int(var.numpy().flatten()[0])
def _int_(var):
numel = np.prod(var.shape)
assert numel == 1, "only one element variable can be converted to int."
tensor = var.value().get_tensor()
assert tensor._is_initialized(), "variable's tensor is not initialized"
return int(var.numpy().flatten()[0])
def _len_(var):
return var.shape[0]
def _index_(var):
numel = np.prod(var.shape)
assert numel == 1, "only one element variable can be converted to python index."
tensor = var.value().get_tensor()
assert tensor._is_initialized(), "variable's tensor is not initialized"
if six.PY2:
return long(var.numpy().flatten()[0])
else:
return int(var.numpy().flatten()[0])
@property
def _ndim_(var):
return len(var.shape)
@property
def _size_(var):
return np.prod(var.shape)
def _scalar_add_(var, value):
return _scalar_elementwise_op_(var, 1.0, value)
def _scalar_sub_(var, value):
return _scalar_elementwise_op_(var, 1.0, -value)
def _scalar_rsub_(var, value):
return _scalar_elementwise_op_(var, -1.0, value)
def _scalar_mul_(var, value):
return _scalar_elementwise_op_(var, value, 0.0)
def _scalar_div_(var, value):
return _scalar_elementwise_op_(var, 1.0 / value, 0.0)
# for binary operator such as elementwise, compare
def _binary_creator_(method_name,
op_type,
reverse=False,
scalar_method=None):
def __impl__(self, other_var):
# FIXME(zjl): elementwise_div between integers cannot be converted to scale,
# which may lose accuracy. This is a hot fix for release 1.6.
if scalar_method is not None and not (
op_type == 'elementwise_div' and
self.dtype in _supported_int_dtype_):
if isinstance(other_var, float):
if self.dtype in _supported_int_dtype_:
assert other_var == int(other_var), \
"float value {} cannot convert to integer".format(other_var)
return scalar_method(self, other_var)
elif isinstance(other_var, int):
return scalar_method(self, float(other_var))
lhs_dtype = self.dtype
if not isinstance(other_var, core.VarBase):
if reverse:
other_var = create_tensor(
other_var, dtype=lhs_dtype, shape=self.shape)
else:
# add fill_op
other_var = create_scalar(value=other_var, dtype=lhs_dtype)
rhs_dtype = other_var.dtype
if lhs_dtype != rhs_dtype:
other_var = astype(other_var, lhs_dtype)
if reverse:
tmp = self
self = other_var
other_var = tmp
axis = -1
math_op = getattr(core.ops, op_type)
return math_op(self, other_var, 'axis', axis)
comment = OpProtoHolder.instance().get_op_proto(op_type).comment
__impl__.__doc__ = """
{0}
Args:
other_var(Tensor|float|int): right hand Tensor
Returns:
Tensor
""".format(comment)
__impl__.__name__ = method_name
return __impl__
varbase_methods = [
('__neg__', _neg_),
('__float__', _float_),
('__long__', _long_),
('__int__', _int_),
('__len__', _len_),
('__index__', _index_),
('astype', astype),
('dim', lambda x: len(x.shape)),
('ndimension', lambda x: len(x.shape)),
('ndim', _ndim_),
('size', _size_),
('__add__',
_binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)),
## a+b == b+a. Do not need to reverse explicitly
('__radd__',
_binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
('__sub__', _binary_creator_('__sub__', 'elementwise_sub', False,
_scalar_sub_)),
('__rsub__', _binary_creator_('__rsub__', 'elementwise_sub', True,
_scalar_rsub_)),
('__mul__', _binary_creator_('__mul__', 'elementwise_mul', False,
_scalar_mul_)),
## a*b == b*a. Do not need to reverse explicitly
('__rmul__',
_binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
('__div__', _binary_creator_('__div__', 'elementwise_div', False,
_scalar_div_)),
('__truediv__', _binary_creator_('__truediv__', 'elementwise_div',
False, _scalar_div_)),
('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
None)),
('__rtruediv__', _binary_creator_('rtruediv__', 'elementwise_div', True,
None)),
('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
None)),
('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
None)),
('__floordiv__', _binary_creator_('__floordiv__',
'elementwise_floordiv', False, None)),
('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
None)),
## for logical compare
('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None)),
('__array_ufunc__', None)
]
global _already_patch_varbase
if not _already_patch_varbase:
for method in varbase_methods:
method_name = method[0]
method_impl = method[1]
setattr(core.VarBase, method_name, method_impl)
else:
import paddle.tensor
# Tensor method from module paddle.tensor
tensor_methods = paddle.tensor.linalg.__all__ + \
paddle.tensor.math.__all__ + \
paddle.tensor.logic.__all__ + \
paddle.tensor.manipulation.__all__ + \
paddle.tensor.search.__all__ + \
paddle.tensor.stat.__all__ + \
paddle.tensor.attribute.__all__
for method_name in tensor_methods:
if hasattr(core.VarBase, method_name): continue
method_impl = getattr(paddle.tensor, method_name, None)
if method_impl: setattr(core.VarBase, method_name, method_impl)
_already_patch_varbase = True