You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_async_executor.py

87 lines
2.8 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
import paddle
import unittest
import tarfile
import os
import shutil
proto_str = ('name: "MultiSlotDataFeed"\n'
'batch_size: 2\n'
'multi_slot_desc {\n'
' slots {\n'
' name: "words"\n'
' type: "uint64"\n'
' is_dense: false\n'
' is_used: true\n'
' }\n'
' slots {\n'
' name: "label"\n'
' type: "uint64"\n'
' is_dense: false\n'
' is_used: true\n'
' }\n'
'}')
URL = 'http://paddle-unittest-data.gz.bcebos.com/python_paddle_fluid_tests_demo_async-executor/train_data.tar.gz'
MD5 = '2a405a31508969b3ab823f42c0f522ca'
def bow_net(data,
label,
dict_dim=89528,
emb_dim=128,
hid_dim=128,
hid_dim2=96,
class_dim=2):
"""
BOW net
This model is from https://github.com/PaddlePaddle/models:
models/fluid/PaddleNLP/text_classification/nets.py
"""
# embedding
emb = fluid.layers.embedding(
input=data, size=[dict_dim, emb_dim], is_sparse=True)
bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
bowh = fluid.layers.tanh(bow)
# fc layer after conv
fc_1 = fluid.layers.fc(input=bowh, size=hid_dim, act="tanh")
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
# probability of each class
prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
# cross entropy loss
cost = fluid.layers.cross_entropy(input=prediction, label=label)
# mean loss
avg_cost = fluid.layers.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, acc, prediction
class TestAsyncExecutor(unittest.TestCase):
def setUp(self):
with open('./data.prototxt', 'w+') as f:
f.write(proto_str)
f.close()
with tarfile.open(paddle.dataset.common.download(URL, "imdb",
MD5)) as tarf:
tarf.extractall(path='./')
tarf.close()
if __name__ == '__main__':
unittest.main()