You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							195 lines
						
					
					
						
							7.0 KiB
						
					
					
				
			
		
		
	
	
							195 lines
						
					
					
						
							7.0 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/fluid/framework/eigen.h"
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
#include "paddle/fluid/operators/lookup_table_op.h"
 | 
						|
#include "paddle/fluid/platform/assert.h"
 | 
						|
#include "paddle/fluid/platform/cuda_primitives.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
template <typename T, int BlockDimX, int BlockDimY, int GridDimX,
 | 
						|
          bool PaddingFlag>
 | 
						|
__global__ void LookupTable(T* output, const T* table, const int64_t* ids,
 | 
						|
                            const int64_t N, const int64_t K, const int64_t D,
 | 
						|
                            const int64_t padding_idx) {
 | 
						|
  int idx = threadIdx.x;
 | 
						|
  int idy = blockIdx.x + threadIdx.y * GridDimX;
 | 
						|
 | 
						|
  while (idy < K) {
 | 
						|
    int64_t id = ids[idy];
 | 
						|
    PADDLE_ASSERT(id >= 0);
 | 
						|
    PADDLE_ASSERT(id < N);
 | 
						|
    T* out = output + idy * D;
 | 
						|
    const T* tab = table + id * D;
 | 
						|
    for (int i = idx; i < D; i += BlockDimX) {
 | 
						|
      if (PaddingFlag) {
 | 
						|
        if (id == padding_idx)
 | 
						|
          out[i] = static_cast<T>(0);
 | 
						|
        else
 | 
						|
          out[i] = tab[i];
 | 
						|
      } else {
 | 
						|
        out[i] = tab[i];
 | 
						|
      }
 | 
						|
    }
 | 
						|
    idy += BlockDimY * GridDimX;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T, int BlockDimX, int BlockDimY, int GridDimX>
 | 
						|
__global__ void LookupTableGrad(T* table, const T* output, const int64_t* ids,
 | 
						|
                                const int64_t N, const int64_t K,
 | 
						|
                                const int64_t D) {
 | 
						|
  int idx = threadIdx.x;
 | 
						|
  int idy = blockIdx.x + threadIdx.y * GridDimX;
 | 
						|
 | 
						|
  while (idy < K) {
 | 
						|
    int id = ids[idy];
 | 
						|
    PADDLE_ASSERT(id >= 0);
 | 
						|
    PADDLE_ASSERT(id < N);
 | 
						|
    const T* out = output + idy * D;
 | 
						|
    T* tab = table + id * D;
 | 
						|
    for (int i = idx; i < D; i += BlockDimX) {
 | 
						|
      paddle::platform::CudaAtomicAdd(&tab[i], out[i]);
 | 
						|
    }
 | 
						|
    idy += BlockDimY * GridDimX;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class LookupTableCUDAKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto* table_t = context.Input<LoDTensor>("W");
 | 
						|
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
 | 
						|
    auto* ids_var = context.InputVar("Ids");
 | 
						|
    Tensor* output_t = context.Output<Tensor>("Out");
 | 
						|
 | 
						|
    int64_t* ids;
 | 
						|
    int64_t K;
 | 
						|
 | 
						|
    // The type of Ids(Input) is SelectedRows or LoDTensor, when Ids's type
 | 
						|
    // is LoDTensor, this tensor contains the ids to be looked up in W;
 | 
						|
    // when Ids's type is SelectedRows, the rows of Ids contains the
 | 
						|
    // ids to be looked up in W.
 | 
						|
    if (ids_var->IsType<framework::LoDTensor>()) {
 | 
						|
      auto* ids_t = context.Input<LoDTensor>("Ids");
 | 
						|
      ids = const_cast<int64_t*>(ids_t->data<int64_t>());
 | 
						|
      K = ids_t->numel();
 | 
						|
    } else if (ids_var->IsType<framework::SelectedRows>()) {
 | 
						|
      auto* ids_t = context.Input<framework::SelectedRows>("Ids");
 | 
						|
      ids = const_cast<int64_t*>(ids_t->rows().CUDAData(context.GetPlace()));
 | 
						|
      K = ids_t->rows().size();
 | 
						|
      output_t->Resize({K, table_t->dims()[1]});
 | 
						|
    } else {
 | 
						|
      PADDLE_THROW("Unsupported Variable Type of Ids");
 | 
						|
    }
 | 
						|
 | 
						|
    size_t N = table_t->dims()[0];
 | 
						|
    size_t D = table_t->dims()[1];
 | 
						|
    auto* table = table_t->data<T>();
 | 
						|
    auto* output = output_t->mutable_data<T>(context.GetPlace());
 | 
						|
 | 
						|
    dim3 threads(128, 8);
 | 
						|
    dim3 grids(8, 1);
 | 
						|
 | 
						|
    if (padding_idx == -1)
 | 
						|
      LookupTable<
 | 
						|
          T, 128, 8, 8,
 | 
						|
          false><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
 | 
						|
          output, table, ids, N, K, D, padding_idx);
 | 
						|
    else
 | 
						|
      LookupTable<
 | 
						|
          T, 128, 8, 8,
 | 
						|
          true><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
 | 
						|
          output, table, ids, N, K, D, padding_idx);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class LookupTableGradCUDAKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto& dev_ctx =
 | 
						|
        context.template device_context<platform::CUDADeviceContext>();
 | 
						|
    bool is_sparse = context.Attr<bool>("is_sparse");
 | 
						|
    // Since paddings are not trainable and fixed in forward, the gradient of
 | 
						|
    // paddings makes no sense and we don't deal with it in backward.
 | 
						|
    if (is_sparse) {
 | 
						|
      auto* ids = context.Input<LoDTensor>("Ids");
 | 
						|
      auto* table = context.Input<LoDTensor>("W");
 | 
						|
      auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
 | 
						|
      auto* d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
 | 
						|
 | 
						|
      auto* ids_data = ids->data<int64_t>();
 | 
						|
      auto ids_dim = ids->dims();
 | 
						|
 | 
						|
      auto stream = dev_ctx.stream();
 | 
						|
      // copy GPU memory to CPU pinned memory
 | 
						|
      framework::Vector<int64_t> new_rows;
 | 
						|
      new_rows.resize(ids_dim[0]);
 | 
						|
      auto gpu_place = boost::get<platform::CUDAPlace>(context.GetPlace());
 | 
						|
 | 
						|
      // TODO(yuyang18): Strange code here.
 | 
						|
      memory::Copy(platform::CPUPlace(),
 | 
						|
                   new_rows.CUDAMutableData(context.GetPlace()), gpu_place,
 | 
						|
                   ids_data, ids_dim[0] * sizeof(int64_t), stream);
 | 
						|
 | 
						|
      d_table->set_rows(new_rows);
 | 
						|
 | 
						|
      auto* d_table_value = d_table->mutable_value();
 | 
						|
      d_table_value->Resize({ids_dim[0], table->dims()[1]});
 | 
						|
      d_table_value->mutable_data<T>(context.GetPlace());
 | 
						|
 | 
						|
      auto* d_table_data = d_table_value->data<T>();
 | 
						|
      auto* d_output_data = d_output->data<T>();
 | 
						|
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims());
 | 
						|
      memory::Copy(gpu_place, d_table_data, gpu_place, d_output_data,
 | 
						|
                   d_output->numel() * sizeof(T), stream);
 | 
						|
 | 
						|
    } else {
 | 
						|
      auto ids_t = context.Input<LoDTensor>("Ids");
 | 
						|
      auto d_output_t = context.Input<LoDTensor>(framework::GradVarName("Out"));
 | 
						|
      auto d_table_t = context.Output<LoDTensor>(framework::GradVarName("W"));
 | 
						|
 | 
						|
      int N = d_table_t->dims()[0];
 | 
						|
      int D = d_table_t->dims()[1];
 | 
						|
      int K = ids_t->numel();
 | 
						|
      const int64_t* ids = ids_t->data<int64_t>();
 | 
						|
      const T* d_output = d_output_t->data<T>();
 | 
						|
      T* d_table = d_table_t->mutable_data<T>(context.GetPlace());
 | 
						|
 | 
						|
      auto t = framework::EigenVector<T>::Flatten(*d_table_t);
 | 
						|
      t.device(*dev_ctx.eigen_device()) = t.constant(static_cast<T>(0));
 | 
						|
 | 
						|
      dim3 threads(128, 8);
 | 
						|
      dim3 grids(8, 1);
 | 
						|
      LookupTableGrad<T, 128, 8, 8><<<grids, threads, 0, dev_ctx.stream()>>>(
 | 
						|
          d_table, d_output, ids, N, K, D);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
REGISTER_OP_CUDA_KERNEL(lookup_table, ops::LookupTableCUDAKernel<float>,
 | 
						|
                        ops::LookupTableCUDAKernel<double>);
 | 
						|
REGISTER_OP_CUDA_KERNEL(lookup_table_grad,
 | 
						|
                        ops::LookupTableGradCUDAKernel<float>,
 | 
						|
                        ops::LookupTableGradCUDAKernel<double>);
 |