You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
5.6 KiB
182 lines
5.6 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "paddle/fluid/framework/dlpack_tensor.h"
|
|
#include "paddle/fluid/framework/data_type.h"
|
|
|
|
namespace paddle {
|
|
namespace platform {
|
|
struct bfloat16;
|
|
struct float16;
|
|
} // namespace platform
|
|
} // namespace paddle
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
namespace internal {
|
|
template <typename T>
|
|
static ::DLDataType GetDLDataTypeCode() {
|
|
::DLDataType dtype;
|
|
if (std::is_same<T, platform::float16>::value ||
|
|
std::is_same<T, platform::bfloat16>::value ||
|
|
std::is_floating_point<T>::value) {
|
|
dtype.code = kDLFloat;
|
|
} else if (std::is_unsigned<T>::value) {
|
|
dtype.code = kDLUInt;
|
|
} else if (std::is_integral<T>::value) {
|
|
dtype.code = kDLInt;
|
|
} else {
|
|
PADDLE_THROW(platform::errors::Unavailable(
|
|
"Unsupported data type (%s), only supports float16, float, unsigned "
|
|
"int and int.",
|
|
platform::demangle(typeid(T).name())));
|
|
}
|
|
dtype.bits = 8 * sizeof(T);
|
|
dtype.lanes = 1;
|
|
return dtype;
|
|
}
|
|
|
|
static std::unordered_map<int, ::DLDataType> CreateDLDataTypeMap() {
|
|
static std::unordered_map<int, ::DLDataType> result;
|
|
|
|
#define REG_DL_DATA_TYPE(cpp_type, proto_type) \
|
|
result[static_cast<int>(proto_type)] = GetDLDataTypeCode<cpp_type>()
|
|
|
|
_ForEachDataType_(REG_DL_DATA_TYPE);
|
|
#undef REG_DL_DATA_TYPE
|
|
return result;
|
|
}
|
|
|
|
static DLDataType GetDLDataTypeFromTypeIndex(proto::VarType::Type type) {
|
|
static auto type_to_dtype_map = CreateDLDataTypeMap();
|
|
static auto type_to_dtype_map_end_it = type_to_dtype_map.end();
|
|
auto it = type_to_dtype_map.find(static_cast<int>(type));
|
|
PADDLE_ENFORCE_NE(it, type_to_dtype_map_end_it,
|
|
platform::errors::InvalidArgument(
|
|
"Unsupported data type (%s).", DataTypeToString(type)));
|
|
return it->second;
|
|
#undef REG_DL_DATA_TYPE
|
|
}
|
|
|
|
struct DLContextVisitor : public boost::static_visitor<::DLContext> {
|
|
inline ::DLContext operator()(const platform::CPUPlace &place) const {
|
|
::DLContext ctx;
|
|
ctx.device_type = kDLCPU;
|
|
ctx.device_id = 0;
|
|
return ctx;
|
|
}
|
|
|
|
inline ::DLContext operator()(const platform::XPUPlace &place) const {
|
|
PADDLE_THROW(
|
|
platform::errors::Unimplemented("platform::XPUPlace is not supported"));
|
|
}
|
|
|
|
inline ::DLContext operator()(const platform::CUDAPlace &place) const {
|
|
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
|
|
::DLContext ctx;
|
|
ctx.device_type = kDLGPU;
|
|
ctx.device_id = place.device;
|
|
return ctx;
|
|
#else
|
|
PADDLE_THROW(platform::errors::Unavailable(
|
|
"platform::CUDAPlace is not supported in CPU only version."));
|
|
#endif
|
|
}
|
|
|
|
inline ::DLContext operator()(const platform::CUDAPinnedPlace &place) const {
|
|
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
|
|
::DLContext ctx;
|
|
ctx.device_type = kDLCPUPinned;
|
|
ctx.device_id = 0;
|
|
return ctx;
|
|
#else
|
|
PADDLE_THROW(platform::errors::Unavailable(
|
|
"platform::CUDAPinnedPlace is not supported in CPU only version."));
|
|
#endif
|
|
}
|
|
};
|
|
} // namespace internal
|
|
|
|
DLPackTensor::DLPackTensor(const Tensor &tensor, LaneType lanes) {
|
|
// init data, data buffer
|
|
t_.data = const_cast<void *>(tensor.data<void>());
|
|
|
|
// init ctx, DLContext type with device_type and device_id
|
|
auto place = tensor.place();
|
|
t_.ctx = boost::apply_visitor(internal::DLContextVisitor(), place);
|
|
|
|
// init dtype
|
|
t_.dtype = internal::GetDLDataTypeFromTypeIndex(tensor.type());
|
|
t_.dtype.lanes = lanes;
|
|
|
|
// init ndim, tensor rank
|
|
auto &dims = tensor.dims();
|
|
using DimType = decltype(t_.ndim); // int
|
|
t_.ndim = static_cast<DimType>(dims.size());
|
|
|
|
// init shape, tensor dims
|
|
t_.shape = shape_;
|
|
for (DimType i = 0; i < t_.ndim; ++i) {
|
|
t_.shape[i] = dims[i];
|
|
}
|
|
|
|
// init strides, nullptr means the tensor is compact
|
|
t_.strides = nullptr;
|
|
|
|
// init byte_offset
|
|
t_.byte_offset = 0;
|
|
}
|
|
|
|
::DLManagedTensor *DLPackTensor::ToCudfCompatibleDLManagedTensor() {
|
|
// init shape, tensor dims
|
|
// for DLManagedTensor shape need to be compatible with ndim
|
|
// refer to cupy and cudf, we new int64[ndim]
|
|
auto shape = new int64_t[t_.ndim];
|
|
using DimType = decltype(t_.ndim); // int
|
|
for (DimType i = 0; i < t_.ndim; ++i) {
|
|
shape[i] = t_.shape[i];
|
|
}
|
|
t_.shape = shape;
|
|
|
|
// init strides, nullptr means the tensor is compact
|
|
// refer to cupy and cudf, the compact tensor first dim's strides need to be 1
|
|
// and second dim's strides need to be length of rows of cudf
|
|
// cudf now only support dim=2
|
|
PADDLE_ENFORCE_LE(t_.ndim, 2, platform::errors::InvalidArgument(
|
|
"cudf now only supports dimension is 2, "
|
|
"but received dimension is %d.",
|
|
t_.ndim));
|
|
|
|
if (t_.ndim > 1)
|
|
t_.strides = new int64_t[2]{1, t_.shape[1]};
|
|
else
|
|
t_.strides = new int64_t[1]{1};
|
|
|
|
auto tensor = new DLManagedTensor;
|
|
tensor->dl_tensor = t_;
|
|
|
|
tensor->deleter = [](DLManagedTensor *arg) {
|
|
delete[] arg->dl_tensor.shape;
|
|
delete[] arg->dl_tensor.strides;
|
|
delete arg;
|
|
};
|
|
|
|
tensor->manager_ctx = nullptr;
|
|
|
|
return tensor;
|
|
}
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|