You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/fleet/heter_ps/optimizer.cuh.h

127 lines
3.7 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <curand_kernel.h>
#include <vector>
#include "optimizer_conf.h"
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
#ifdef PADDLE_WITH_PSLIB
namespace paddle {
namespace framework {
__device__ double cuda_double_random(unsigned long long seed) {
// copy from MurmurHash3
seed ^= seed >> 33;
seed *= 0xff51afd7ed558ccd;
seed ^= seed >> 33;
seed *= 0xc4ceb9fe1a85ec53;
seed ^= seed >> 33;
return ((double)seed / 18446744073709551615.0);
}
__device__ float cuda_normal_random(unsigned long long idx) {
static double pi = 3.1415926897932384;
unsigned long long x = clock64() + idx;
double x1, x2, res;
while (1) {
x1 = cuda_double_random(x);
x2 = cuda_double_random(x + 33);
res = sqrt(-2.0 * log(x1)) * cos(2.0 * pi * x2);
if (-10 < res && res < 10) break;
x += 207;
}
return res;
}
template <typename ValType, typename GradType>
class Optimizer {
public:
Optimizer() {}
~Optimizer() {}
void initialize() {}
__device__ void update_lr(float& w, float& g2sum, float g, float scale) {
double add_g2sum = 0;
double ratio = optimizer_config::learning_rate *
sqrt(optimizer_config::initial_g2sum /
(optimizer_config::initial_g2sum + g2sum));
double scaled_grad = g / scale;
w += scaled_grad * ratio;
if (w < optimizer_config::min_bound) w = optimizer_config::min_bound;
if (w > optimizer_config::max_bound) w = optimizer_config::max_bound;
add_g2sum = scaled_grad * scaled_grad;
g2sum += add_g2sum;
}
__device__ void update_mf(int n, float* w, float& g2sum, const float* g,
float scale) {
double add_g2sum = 0;
double ratio = optimizer_config::mf_learning_rate *
sqrt(optimizer_config::mf_initial_g2sum /
(optimizer_config::mf_initial_g2sum + g2sum));
for (int i = 0; i < n; ++i) {
double scaled_grad = g[i] / scale;
w[i] += scaled_grad * ratio;
if (w[i] < optimizer_config::mf_min_bound)
w[i] = optimizer_config::mf_min_bound;
if (w[i] > optimizer_config::mf_max_bound)
w[i] = optimizer_config::mf_max_bound;
add_g2sum = scaled_grad * scaled_grad;
}
g2sum += add_g2sum / n;
}
__device__ void update_value(ValType& val, const GradType& grad) {
val.slot = grad.slot;
;
val.show += grad.show;
val.clk += grad.clk;
update_lr(val.lr, val.lr_g2sum, grad.lr_g, 1.0);
if (val.mf_size == 0) {
if (optimizer_config::mf_create_thresholds <=
optimizer_config::nonclk_coeff * (val.show - val.clk) +
optimizer_config::clk_coeff * val.clk) {
val.mf_size = MF_DIM + 1;
val.mf[0] = 0;
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
curandState state;
curand_init(clock64(), tid_x, 0, &state);
for (int i = 0; i < MF_DIM; ++i) {
val.mf[i + 1] =
(curand_uniform(&state)) * optimizer_config::mf_initial_range;
}
}
} else {
update_mf(MF_DIM, &val.mf[1], val.mf[0], grad.mf_g, 1.0);
}
}
};
} // end namespace framework
} // end namespace paddle
#endif