101 lines
3.9 KiB
101 lines
3.9 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
from paddle.fluid import framework, unique_name
|
|
from paddle.fluid.executor import Executor
|
|
from paddle.fluid.layers import fill_constant
|
|
|
|
|
|
class TestRoutineOp(unittest.TestCase):
|
|
def test_simple_routine(self):
|
|
ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
|
|
|
|
# Create LOD_TENSOR<INT64> and put it into the scope. This placeholder
|
|
# variable will be filled in and returned by fluid.channel_recv
|
|
result = self._create_tensor('return_value',
|
|
core.VarDesc.VarType.LOD_TENSOR,
|
|
core.VarDesc.VarType.INT64)
|
|
|
|
with fluid.Go():
|
|
input_value = fill_constant(
|
|
shape=[1], dtype=core.VarDesc.VarType.FP64, value=1234)
|
|
fluid.channel_send(ch, input_value)
|
|
|
|
result, status = fluid.channel_recv(ch, result)
|
|
fluid.channel_close(ch)
|
|
|
|
cpu = core.CPUPlace()
|
|
exe = Executor(cpu)
|
|
|
|
outs = exe.run(fetch_list=[result])
|
|
self.assertEqual(outs[0], 1234)
|
|
|
|
def test_daisy_chain(self):
|
|
'''
|
|
Mimics classic Daisy-chain test: https://talks.golang.org/2012/concurrency.slide#39
|
|
'''
|
|
n = 100
|
|
|
|
leftmost = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
|
|
left = leftmost
|
|
|
|
# TODO(thuan): Use fluid.While() after scope capture is implemented.
|
|
# https://github.com/PaddlePaddle/Paddle/issues/8502
|
|
for i in range(n):
|
|
right = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
|
|
with fluid.Go():
|
|
one_tensor = self._create_one_dim_tensor(1)
|
|
result = self._create_tensor('return_value',
|
|
core.VarDesc.VarType.LOD_TENSOR,
|
|
core.VarDesc.VarType.INT64)
|
|
|
|
result, status = fluid.channel_recv(right, result)
|
|
one_added = fluid.layers.elementwise_add(x=one_tensor, y=result)
|
|
fluid.channel_send(left, one_added)
|
|
left = right
|
|
|
|
# Trigger the channel propagation by sending a "1" to rightmost channel
|
|
with fluid.Go():
|
|
one_tensor = self._create_one_dim_tensor(1)
|
|
fluid.channel_send(right, one_tensor)
|
|
|
|
leftmost_result = self._create_tensor('return_value',
|
|
core.VarDesc.VarType.LOD_TENSOR,
|
|
core.VarDesc.VarType.INT64)
|
|
leftmost_result, status = fluid.channel_recv(leftmost, leftmost_result)
|
|
|
|
cpu = core.CPUPlace()
|
|
exe = Executor(cpu)
|
|
leftmost_data = exe.run(fetch_list=[leftmost_result])
|
|
|
|
# The leftmost_data should be equal to the number of channels + 1
|
|
self.assertEqual(leftmost_data[0][0], n + 1)
|
|
|
|
def _create_one_dim_tensor(self, value):
|
|
one_dim_tensor = fill_constant(
|
|
shape=[1], dtype=core.VarDesc.VarType.INT64, value=value)
|
|
one_dim_tensor.stop_gradient = True
|
|
return one_dim_tensor
|
|
|
|
def _create_tensor(self, name, type, dtype):
|
|
return framework.default_main_program().current_block().create_var(
|
|
name=unique_name.generate(name), type=type, dtype=dtype)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|