You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
155 lines
4.9 KiB
155 lines
4.9 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#ifdef __NVCC__
|
|
#include <thrust/device_ptr.h>
|
|
#include <thrust/functional.h>
|
|
#include <thrust/reduce.h>
|
|
#else
|
|
#include <algorithm>
|
|
#endif
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/platform/for_range.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SequenceMaskOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must exist");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) must exist");
|
|
|
|
auto maxlen = ctx->Attrs().Get<int>("maxlen");
|
|
if (maxlen > 0) { // We can only infershape when maxlen > 0
|
|
auto dim = framework::vectorize2int(ctx->GetInputDim("X"));
|
|
dim.push_back(maxlen);
|
|
ctx->SetOutputDim("Y", framework::make_ddim(dim));
|
|
}
|
|
}
|
|
};
|
|
|
|
class SequenceMaskOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "The input tensor of sequence_mask op.");
|
|
AddOutput("Y", "The output mask of sequence_mask op.");
|
|
AddAttr<int>("maxlen",
|
|
"The maximum length of the sequence. If maxlen < 0, maxlen "
|
|
"= max(Input(X)).")
|
|
.SetDefault(-1)
|
|
.AddCustomChecker([](int &v) {
|
|
PADDLE_ENFORCE(v < 0 || v >= 1,
|
|
"Attr(maxlen) must be less than 0 or larger than 1");
|
|
});
|
|
AddAttr<int>("out_dtype", "Output data type");
|
|
AddComment(R"DOC(
|
|
SequenceMask Operator
|
|
|
|
This operator outputs a Mask according to Input(X) and Attr(maxlen).
|
|
Supposing Input(X) is a Tensor with shape [d_1, d_2, ..., d_n], the
|
|
Output(Y) is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
|
|
|
|
Y(i_1, i_2, ..., i_n, j) = (j < X(i_1, i_2, ..., i_n))
|
|
|
|
If maxlen < 0, maxlen = max(X)
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
template <typename Tx, typename Ty>
|
|
struct SequenceMaskForRangeFunctor {
|
|
HOSTDEVICE SequenceMaskForRangeFunctor(const Tx *x, Ty *y, int maxlen)
|
|
: x_(x), y_(y), maxlen_(maxlen) {}
|
|
|
|
HOSTDEVICE void operator()(int y_idx) const {
|
|
int x_idx = y_idx / maxlen_;
|
|
int j = y_idx % maxlen_;
|
|
y_[y_idx] = static_cast<Ty>(j < x_[x_idx] ? 1 : 0);
|
|
}
|
|
|
|
private:
|
|
const Tx *x_;
|
|
Ty *y_;
|
|
int maxlen_;
|
|
};
|
|
|
|
template <typename DeviceContext, typename Tx>
|
|
struct SequenceMaskFunctor {
|
|
using Tensor = framework::LoDTensor;
|
|
|
|
SequenceMaskFunctor(const DeviceContext &ctx, const Tx *x, Tensor *y,
|
|
int limits, int maxlen)
|
|
: ctx_(ctx), x_(x), y_(y), limits_(limits), maxlen_(maxlen) {}
|
|
|
|
template <typename Ty>
|
|
void apply() const {
|
|
auto *y_data = y_->mutable_data<Ty>(ctx_.GetPlace());
|
|
platform::ForRange<DeviceContext> for_range(ctx_, limits_);
|
|
for_range(SequenceMaskForRangeFunctor<Tx, Ty>(x_, y_data, maxlen_));
|
|
}
|
|
|
|
private:
|
|
const DeviceContext &ctx_;
|
|
const Tx *x_;
|
|
Tensor *y_;
|
|
int limits_;
|
|
int maxlen_;
|
|
};
|
|
|
|
template <typename DeviceContext, typename Tx>
|
|
class SequenceMaskKernel : public framework::OpKernel<Tx> {
|
|
using Tensor = framework::LoDTensor;
|
|
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
auto *x = ctx.Input<Tensor>("X");
|
|
auto *y = ctx.Output<Tensor>("Y");
|
|
auto maxlen = ctx.Attr<int>("maxlen");
|
|
|
|
auto *x_data = x->data<Tx>();
|
|
auto x_numel = x->numel();
|
|
if (maxlen < 0) {
|
|
#ifdef __NVCC__
|
|
VLOG(10)
|
|
<< "SequenceMaskOp on GPU may be slow when maxlen is not provided.";
|
|
maxlen = static_cast<int>(
|
|
thrust::reduce(thrust::device_pointer_cast(x_data),
|
|
thrust::device_pointer_cast(x_data) + x_numel,
|
|
static_cast<Tx>(0), thrust::maximum<Tx>()));
|
|
#else
|
|
maxlen = static_cast<int>(*std::max_element(x_data, x_data + x_numel));
|
|
#endif
|
|
auto y_dim = framework::vectorize2int(x->dims());
|
|
y_dim.push_back(maxlen);
|
|
y->Resize(framework::make_ddim(y_dim));
|
|
}
|
|
|
|
auto out_dtype = static_cast<framework::proto::VarType::Type>(
|
|
ctx.Attr<int>("out_dtype"));
|
|
auto &dev_ctx = ctx.template device_context<DeviceContext>();
|
|
framework::VisitDataType(out_dtype,
|
|
SequenceMaskFunctor<DeviceContext, Tx>(
|
|
dev_ctx, x_data, y, x_numel * maxlen, maxlen));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|