You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
111 lines
4.1 KiB
111 lines
4.1 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/maxout_op.h"
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput(
|
|
"X",
|
|
"(Tensor) The input tensor of maxout operator with data type of "
|
|
"float32. The format of input tensor is NCHW. Where N is batch size,"
|
|
" C is the number of channels, H and W is the height and width of "
|
|
"feature.");
|
|
AddOutput("Out",
|
|
"(Tensor) The output tensor of maxout operator."
|
|
"The data type is float32."
|
|
"The format of output tensor is also NCHW."
|
|
"Where N is batch size, C is "
|
|
"the number of channels, H and W is the height and "
|
|
"width of feature.");
|
|
AddAttr<int>(
|
|
"groups",
|
|
"(int),"
|
|
"Specifies how many groups the input tensor will be split"
|
|
"in the channel dimension. And the number of output channel is "
|
|
"the number of channels divided by groups.");
|
|
AddComment(R"DOC(
|
|
MaxOut Operator.
|
|
|
|
Assumed the input shape is (N, Ci, H, W).
|
|
The output shape is (N, Co, H, W).
|
|
Then $Co = Ci / groups$ and the operator formula is as follows:
|
|
|
|
$$ y_{si+j} = \max_{k} x_{gsi + sk + j} $$
|
|
$$ g = groups $$
|
|
$$ s = \\frac{input.size}{num\\_channels} $$
|
|
$$ 0 \\le i < \\frac{num\\_channels}{groups} $$
|
|
$$ 0 \\le j < s $$
|
|
$$ 0 \\le k < groups $$
|
|
|
|
Please refer to Paper:
|
|
- Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
|
|
- Multi-digit Number Recognition from Street View \
|
|
Imagery using Deep Convolutional Neural Networks: \
|
|
https://arxiv.org/pdf/1312.6082v4.pdf
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class MaxOutOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of MaxoutOpshould not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of MaxoutOp should not be null.");
|
|
auto in_x_dims = ctx->GetInputDim("X");
|
|
int groups = ctx->Attrs().Get<int>("groups");
|
|
// check groups > 1
|
|
PADDLE_ENFORCE_GT(groups, 1, "groups should be larger than 1 in maxoutop");
|
|
std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1] / groups});
|
|
output_shape.push_back(in_x_dims[2]);
|
|
output_shape.push_back(in_x_dims[3]);
|
|
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
|
|
}
|
|
};
|
|
|
|
class MaxOutOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of MaxOutOpGrad must not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
|
|
"Output(Grad@X) of MaxOutOpGrad should not be null.");
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(maxout, ops::MaxOutOp, ops::MaxOutOpMaker,
|
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
|
REGISTER_OPERATOR(maxout_grad, ops::MaxOutOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
maxout, ops::MaxOutKernel<paddle::platform::CPUDeviceContext, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
maxout_grad,
|
|
ops::MaxOutGradKernel<paddle::platform::CPUDeviceContext, float>);
|