You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
393 lines
15 KiB
393 lines
15 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
constexpr int64_t kOutputDim = 6;
|
|
constexpr int64_t kBBoxSize = 4;
|
|
|
|
class MultiClassNMSOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("BBoxes"),
|
|
"Input(BBoxes) of MultiClassNMS should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Scores"),
|
|
"Input(Scores) of MultiClassNMS should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of MultiClassNMS should not be null.");
|
|
|
|
auto box_dims = ctx->GetInputDim("BBoxes");
|
|
auto score_dims = ctx->GetInputDim("Scores");
|
|
|
|
PADDLE_ENFORCE_EQ(box_dims.size(), 3,
|
|
"The rank of Input(BBoxes) must be 3.");
|
|
PADDLE_ENFORCE_EQ(score_dims.size(), 3,
|
|
"The rank of Input(Scores) must be 3.");
|
|
PADDLE_ENFORCE_EQ(box_dims[2], 4,
|
|
"The 2nd dimension of Input(BBoxes) must be 4, "
|
|
"represents the layout of coordinate "
|
|
"[xmin, ymin, xmax, ymax]");
|
|
PADDLE_ENFORCE_EQ(box_dims[1], score_dims[2],
|
|
"The 1st dimensiong of Input(BBoxes) must be equal to "
|
|
"3rd dimension of Input(Scores), which represents the "
|
|
"predicted bboxes.");
|
|
|
|
// Here the box_dims[0] is not the real dimension of output.
|
|
// It will be rewritten in the computing kernel.
|
|
ctx->SetOutputDim("Out", {box_dims[1], 6});
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(
|
|
ctx.Input<framework::LoDTensor>("Scores")->type()),
|
|
platform::CPUPlace());
|
|
}
|
|
};
|
|
|
|
template <class T>
|
|
bool SortScorePairDescend(const std::pair<float, T>& pair1,
|
|
const std::pair<float, T>& pair2) {
|
|
return pair1.first > pair2.first;
|
|
}
|
|
|
|
template <class T>
|
|
static inline void GetMaxScoreIndex(
|
|
const std::vector<T>& scores, const T threshold, int top_k,
|
|
std::vector<std::pair<T, int>>* sorted_indices) {
|
|
for (size_t i = 0; i < scores.size(); ++i) {
|
|
if (scores[i] > threshold) {
|
|
sorted_indices->push_back(std::make_pair(scores[i], i));
|
|
}
|
|
}
|
|
// Sort the score pair according to the scores in descending order
|
|
std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
|
|
SortScorePairDescend<int>);
|
|
// Keep top_k scores if needed.
|
|
if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
|
|
sorted_indices->resize(top_k);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
static inline T BBoxArea(const T* box, const bool normalized) {
|
|
if (box[2] < box[0] || box[3] < box[1]) {
|
|
// If coordinate values are is invalid
|
|
// (e.g. xmax < xmin or ymax < ymin), return 0.
|
|
return static_cast<T>(0.);
|
|
} else {
|
|
const T w = box[2] - box[0];
|
|
const T h = box[3] - box[1];
|
|
if (normalized) {
|
|
return w * h;
|
|
} else {
|
|
// If coordinate values are not within range [0, 1].
|
|
return (w + 1) * (h + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
static inline T JaccardOverlap(const T* box1, const T* box2,
|
|
const bool normalized) {
|
|
if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
|
|
box2[3] < box1[1]) {
|
|
return static_cast<T>(0.);
|
|
} else {
|
|
const T inter_xmin = std::max(box1[0], box2[0]);
|
|
const T inter_ymin = std::max(box1[1], box2[1]);
|
|
const T inter_xmax = std::min(box1[2], box2[2]);
|
|
const T inter_ymax = std::min(box1[3], box2[3]);
|
|
const T inter_w = inter_xmax - inter_xmin;
|
|
const T inter_h = inter_ymax - inter_ymin;
|
|
const T inter_area = inter_w * inter_h;
|
|
const T bbox1_area = BBoxArea<T>(box1, normalized);
|
|
const T bbox2_area = BBoxArea<T>(box2, normalized);
|
|
return inter_area / (bbox1_area + bbox2_area - inter_area);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class MultiClassNMSKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void NMSFast(const Tensor& bbox, const Tensor& scores,
|
|
const T score_threshold, const T nms_threshold, const T eta,
|
|
const int64_t top_k, std::vector<int>* selected_indices) const {
|
|
// The total boxes for each instance.
|
|
int64_t num_boxes = bbox.dims()[0];
|
|
// 4: [xmin ymin xmax ymax]
|
|
int64_t box_size = bbox.dims()[1];
|
|
|
|
std::vector<T> scores_data(num_boxes);
|
|
std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
|
|
std::vector<std::pair<T, int>> sorted_indices;
|
|
GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);
|
|
|
|
selected_indices->clear();
|
|
T adaptive_threshold = nms_threshold;
|
|
const T* bbox_data = bbox.data<T>();
|
|
|
|
while (sorted_indices.size() != 0) {
|
|
const int idx = sorted_indices.front().second;
|
|
bool keep = true;
|
|
for (size_t k = 0; k < selected_indices->size(); ++k) {
|
|
if (keep) {
|
|
const int kept_idx = (*selected_indices)[k];
|
|
T overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
|
|
bbox_data + kept_idx * box_size, true);
|
|
keep = overlap <= adaptive_threshold;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
if (keep) {
|
|
selected_indices->push_back(idx);
|
|
}
|
|
sorted_indices.erase(sorted_indices.begin());
|
|
if (keep && eta < 1 && adaptive_threshold > 0.5) {
|
|
adaptive_threshold *= eta;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MultiClassNMS(const framework::ExecutionContext& ctx,
|
|
const Tensor& scores, const Tensor& bboxes,
|
|
std::map<int, std::vector<int>>* indices,
|
|
int* num_nmsed_out) const {
|
|
int64_t background_label = ctx.Attr<int>("background_label");
|
|
int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
|
|
int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
|
|
T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
|
|
T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
|
|
T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));
|
|
|
|
int64_t class_num = scores.dims()[0];
|
|
int64_t predict_dim = scores.dims()[1];
|
|
int num_det = 0;
|
|
for (int64_t c = 0; c < class_num; ++c) {
|
|
if (c == background_label) continue;
|
|
Tensor score = scores.Slice(c, c + 1);
|
|
NMSFast(bboxes, score, score_threshold, nms_threshold, nms_eta, nms_top_k,
|
|
&((*indices)[c]));
|
|
num_det += (*indices)[c].size();
|
|
}
|
|
|
|
*num_nmsed_out = num_det;
|
|
const T* scores_data = scores.data<T>();
|
|
if (keep_top_k > -1 && num_det > keep_top_k) {
|
|
std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
|
|
for (const auto& it : *indices) {
|
|
int label = it.first;
|
|
const T* sdata = scores_data + label * predict_dim;
|
|
const std::vector<int>& label_indices = it.second;
|
|
for (size_t j = 0; j < label_indices.size(); ++j) {
|
|
int idx = label_indices[j];
|
|
PADDLE_ENFORCE_LT(idx, predict_dim);
|
|
score_index_pairs.push_back(
|
|
std::make_pair(sdata[idx], std::make_pair(label, idx)));
|
|
}
|
|
}
|
|
// Keep top k results per image.
|
|
std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
|
|
SortScorePairDescend<std::pair<int, int>>);
|
|
score_index_pairs.resize(keep_top_k);
|
|
|
|
// Store the new indices.
|
|
std::map<int, std::vector<int>> new_indices;
|
|
for (size_t j = 0; j < score_index_pairs.size(); ++j) {
|
|
int label = score_index_pairs[j].second.first;
|
|
int idx = score_index_pairs[j].second.second;
|
|
new_indices[label].push_back(idx);
|
|
}
|
|
new_indices.swap(*indices);
|
|
*num_nmsed_out = keep_top_k;
|
|
}
|
|
}
|
|
|
|
void MultiClassOutput(const Tensor& scores, const Tensor& bboxes,
|
|
const std::map<int, std::vector<int>>& selected_indices,
|
|
Tensor* outs) const {
|
|
int predict_dim = scores.dims()[1];
|
|
auto* scores_data = scores.data<T>();
|
|
auto* bboxes_data = bboxes.data<T>();
|
|
auto* odata = outs->data<T>();
|
|
|
|
int count = 0;
|
|
for (const auto& it : selected_indices) {
|
|
int label = it.first;
|
|
const T* sdata = scores_data + label * predict_dim;
|
|
const std::vector<int>& indices = it.second;
|
|
for (size_t j = 0; j < indices.size(); ++j) {
|
|
int idx = indices[j];
|
|
const T* bdata = bboxes_data + idx * kBBoxSize;
|
|
odata[count * kOutputDim] = label; // label
|
|
odata[count * kOutputDim + 1] = sdata[idx]; // score
|
|
// xmin, ymin, xmax, ymax
|
|
std::memcpy(odata + count * kOutputDim + 2, bdata, 4 * sizeof(T));
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* boxes = ctx.Input<Tensor>("BBoxes");
|
|
auto* scores = ctx.Input<Tensor>("Scores");
|
|
auto* outs = ctx.Output<LoDTensor>("Out");
|
|
|
|
auto score_dims = scores->dims();
|
|
|
|
int64_t batch_size = score_dims[0];
|
|
int64_t class_num = score_dims[1];
|
|
int64_t predict_dim = score_dims[2];
|
|
int64_t box_dim = boxes->dims()[2];
|
|
|
|
std::vector<std::map<int, std::vector<int>>> all_indices;
|
|
std::vector<size_t> batch_starts = {0};
|
|
for (int64_t i = 0; i < batch_size; ++i) {
|
|
Tensor ins_score = scores->Slice(i, i + 1);
|
|
ins_score.Resize({class_num, predict_dim});
|
|
|
|
Tensor ins_boxes = boxes->Slice(i, i + 1);
|
|
ins_boxes.Resize({predict_dim, box_dim});
|
|
|
|
std::map<int, std::vector<int>> indices;
|
|
int num_nmsed_out = 0;
|
|
MultiClassNMS(ctx, ins_score, ins_boxes, &indices, &num_nmsed_out);
|
|
all_indices.push_back(indices);
|
|
batch_starts.push_back(batch_starts.back() + num_nmsed_out);
|
|
}
|
|
|
|
int num_kept = batch_starts.back();
|
|
if (num_kept == 0) {
|
|
T* od = outs->mutable_data<T>({1}, ctx.GetPlace());
|
|
od[0] = -1;
|
|
} else {
|
|
outs->mutable_data<T>({num_kept, kOutputDim}, ctx.GetPlace());
|
|
for (int64_t i = 0; i < batch_size; ++i) {
|
|
Tensor ins_score = scores->Slice(i, i + 1);
|
|
ins_score.Resize({class_num, predict_dim});
|
|
|
|
Tensor ins_boxes = boxes->Slice(i, i + 1);
|
|
ins_boxes.Resize({predict_dim, box_dim});
|
|
|
|
int64_t s = batch_starts[i];
|
|
int64_t e = batch_starts[i + 1];
|
|
if (e > s) {
|
|
Tensor out = outs->Slice(s, e);
|
|
MultiClassOutput(ins_score, ins_boxes, all_indices[i], &out);
|
|
}
|
|
}
|
|
}
|
|
|
|
framework::LoD lod;
|
|
lod.emplace_back(batch_starts);
|
|
|
|
outs->set_lod(lod);
|
|
}
|
|
};
|
|
|
|
class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("BBoxes",
|
|
"(Tensor) A 3-D Tensor with shape [N, M, 4] represents the "
|
|
"predicted locations of M bounding bboxes, N is the batch size. "
|
|
"Each bounding box has four coordinate values and the layout is "
|
|
"[xmin, ymin, xmax, ymax].");
|
|
AddInput("Scores",
|
|
"(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
|
|
"predicted confidence predictions. N is the batch size, C is the "
|
|
"class number, M is number of bounding boxes. For each category "
|
|
"there are total M scores which corresponding M bounding boxes. "
|
|
" Please note, M is equal to the 1st dimension of BBoxes. ");
|
|
AddAttr<int>(
|
|
"background_label",
|
|
"(int, defalut: 0) "
|
|
"The index of background label, the background label will be ignored. "
|
|
"If set to -1, then all categories will be considered.")
|
|
.SetDefault(0);
|
|
AddAttr<float>("score_threshold",
|
|
"(float) "
|
|
"Threshold to filter out bounding boxes with low "
|
|
"confidence score. If not provided, consider all boxes.");
|
|
AddAttr<int>("nms_top_k",
|
|
"(int64_t) "
|
|
"Maximum number of detections to be kept according to the "
|
|
"confidences aftern the filtering detections based on "
|
|
"score_threshold");
|
|
AddAttr<float>("nms_threshold",
|
|
"(float, defalut: 0.3) "
|
|
"The threshold to be used in NMS.")
|
|
.SetDefault(0.3);
|
|
AddAttr<float>("nms_eta",
|
|
"(float) "
|
|
"The parameter for adaptive NMS.")
|
|
.SetDefault(1.0);
|
|
AddAttr<int>("keep_top_k",
|
|
"(int64_t) "
|
|
"Number of total bboxes to be kept per image after NMS "
|
|
"step. -1 means keeping all bboxes after NMS step.");
|
|
AddOutput("Out",
|
|
"(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
|
|
"detections. Each row has 6 values: "
|
|
"[label, confidence, xmin, ymin, xmax, ymax], No is the total "
|
|
"number of detections in this mini-batch. For each instance, "
|
|
"the offsets in first dimension are called LoD, the number of "
|
|
"offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
|
|
"no detected bbox.");
|
|
AddComment(R"DOC(
|
|
This operator is to do multi-class non maximum suppression (NMS) on a batched
|
|
of boxes and scores.
|
|
|
|
In the NMS step, this operator greedily selects a subset of detection bounding
|
|
boxes that have high scores larger than score_threshold, if providing this
|
|
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
|
|
is larger than -1. Then this operator pruns away boxes that have high IOU
|
|
(intersection over union) overlap with already selected boxes by adaptive
|
|
threshold NMS based on parameters of nms_threshold and nms_eta.
|
|
|
|
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
|
|
per image if keep_top_k is larger than -1.
|
|
|
|
This operator support multi-class and batched inputs. It applying NMS
|
|
independently for each class. The outputs is a 2-D LoDTenosr, for each
|
|
image, the offsets in first dimension of LoDTensor are called LoD, the number
|
|
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
|
|
means there is no detected bbox for this image. If there is no detected boxes
|
|
for all images, all the elements in LoD are 0, and the Out only contains one
|
|
value which is -1.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(multiclass_nms, ops::MultiClassNMSOp,
|
|
ops::MultiClassNMSOpMaker,
|
|
paddle::framework::EmptyGradOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(multiclass_nms, ops::MultiClassNMSKernel<float>,
|
|
ops::MultiClassNMSKernel<double>);
|