You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
6.6 KiB
156 lines
6.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <string>
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/clip_op.h"
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
#include "paddle/fluid/platform/transform.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using platform::Transform;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class FakeQuantizeKernel : public framework::OpKernel<T> {
|
|
public:
|
|
T FindAbsMax(framework::Tensor* in, int n) const {
|
|
T* p = in->mutable_data<T>(platform::CPUPlace());
|
|
T abs_max = (T)0.00000001;
|
|
for (int i = 0; i < n; i++) {
|
|
T tmp = fabs(p[i]);
|
|
if (tmp > abs_max) abs_max = tmp;
|
|
}
|
|
return T(abs_max);
|
|
}
|
|
T FindRangeAbsMax(framework::Tensor* scale_list, framework::Tensor* out_scale,
|
|
const T& cur_scale, int window_size,
|
|
int current_iter) const {
|
|
T* sl = scale_list->mutable_data<T>(platform::CPUPlace());
|
|
T remove_tmp = sl[current_iter];
|
|
sl[current_iter] = cur_scale;
|
|
T& max_scale = out_scale->mutable_data<T>(platform::CPUPlace())[0];
|
|
if (max_scale < cur_scale) {
|
|
max_scale = cur_scale;
|
|
} else if (fabs(remove_tmp - max_scale) < 1e-6) {
|
|
int size = (current_iter > window_size) ? window_size : current_iter;
|
|
max_scale = T(FindAbsMax(scale_list, size));
|
|
}
|
|
return max_scale;
|
|
}
|
|
|
|
T FindMovingAverageAbsMmax(framework::Tensor* in_scale,
|
|
framework::Tensor* out_scale,
|
|
const T& cur_scale) const {
|
|
T* ins = in_scale->mutable_data<T>(platform::CPUPlace());
|
|
T* outs = out_scale->mutable_data<T>(platform::CPUPlace());
|
|
outs[0] = 0.9 * cur_scale + 0.1 * ins[0];
|
|
return T(outs[0]);
|
|
}
|
|
|
|
virtual void Compute(const framework::ExecutionContext& context) const {
|
|
auto* tensor = context.Output<framework::Tensor>("Out");
|
|
auto* in = context.Input<framework::Tensor>("X");
|
|
const bool is_test = context.Attr<bool>("is_test");
|
|
tensor->mutable_data<T>(in->place());
|
|
|
|
auto* oms_tensor = context.Output<framework::Tensor>("OutMovingScale");
|
|
oms_tensor->mutable_data<T>(in->place());
|
|
|
|
auto quantize_type =
|
|
static_cast<std::string>(context.Attr<std::string>("quantize_type"));
|
|
if (quantize_type == std::string("range_abs_max")) {
|
|
auto* oss_tensor = context.Output<framework::Tensor>("OutScales");
|
|
oss_tensor->mutable_data<T>(
|
|
context.Input<framework::Tensor>("InScales")->place());
|
|
auto* oci_tensor = context.Output<framework::Tensor>("OutCurrentIter");
|
|
oci_tensor->mutable_data<T>(
|
|
context.Input<framework::Tensor>("InCurrentIter")->place());
|
|
}
|
|
|
|
T scale = static_cast<T>(1);
|
|
int window_size = context.Attr<int>("window_size");
|
|
int bit_length = context.Attr<int>("bit_length");
|
|
int bin_cnt = std::pow(2, bit_length - 1) - 1;
|
|
|
|
auto& dev =
|
|
*context.template device_context<DeviceContext>().eigen_device();
|
|
auto raw_in = framework::EigenVector<T>::Flatten(*in);
|
|
if (quantize_type == std::string("abs_max")) {
|
|
auto* saving_scale = context.Output<framework::Tensor>("OutMovingScale");
|
|
auto scale_out = framework::EigenVector<T>::Flatten(*saving_scale);
|
|
scale_out.device(dev) = raw_in.abs().maximum();
|
|
scale = scale_out(0);
|
|
|
|
auto& device_ctx = context.template device_context<DeviceContext>();
|
|
auto* scale_list = context.Output<framework::Tensor>("OutScales");
|
|
math::SetConstant<DeviceContext, T> scalar;
|
|
scale_list->mutable_data<T>(context.GetPlace());
|
|
scalar(device_ctx, scale_list, static_cast<T>(0));
|
|
auto* iter = context.Output<framework::Tensor>("OutCurrentIter");
|
|
iter->mutable_data<T>(context.GetPlace());
|
|
scalar(device_ctx, iter, static_cast<T>(0));
|
|
} else if (quantize_type == std::string("range_abs_max")) {
|
|
auto* moving_scale = context.Input<framework::Tensor>("InMovingScale");
|
|
if (is_test) {
|
|
scale = moving_scale->data<T>()[0];
|
|
} else {
|
|
auto* it = context.Input<framework::Tensor>("InCurrentIter");
|
|
auto* iter = context.Output<framework::Tensor>("OutCurrentIter");
|
|
const int* last_iter = it->data<int>();
|
|
int* current_iter = iter->mutable_data<int>(platform::CPUPlace());
|
|
auto* scale_list = context.Output<framework::Tensor>("OutScales");
|
|
auto* saving_scale =
|
|
context.Output<framework::Tensor>("OutMovingScale");
|
|
auto scale_out = framework::EigenVector<T>::Flatten(*saving_scale);
|
|
scale_out.device(dev) = raw_in.abs().maximum();
|
|
scale = saving_scale->mutable_data<T>(platform::CPUPlace())[0];
|
|
scale = FindRangeAbsMax(scale_list, saving_scale, scale, window_size,
|
|
current_iter[0]);
|
|
saving_scale->mutable_data<T>(platform::CPUPlace())[0] = scale;
|
|
(*current_iter) = (*last_iter) + 1;
|
|
}
|
|
} else if (quantize_type == std::string("moving_average_abs_max")) {
|
|
auto* moving_scale = context.Input<framework::Tensor>("InMovingScale");
|
|
if (is_test) {
|
|
scale = moving_scale->data<T>()[0];
|
|
} else {
|
|
auto* saving_scale =
|
|
context.Output<framework::Tensor>("OutMovingScale");
|
|
auto scale_out = framework::EigenVector<T>::Flatten(*saving_scale);
|
|
scale_out.device(dev) = raw_in.abs().maximum();
|
|
scale = saving_scale->mutable_data<T>(platform::CPUPlace())[0];
|
|
scale = FindMovingAverageAbsMmax(
|
|
const_cast<framework::Tensor*>(moving_scale), saving_scale, scale);
|
|
saving_scale->mutable_data<T>(platform::CPUPlace())[0] = scale;
|
|
}
|
|
}
|
|
|
|
Transform<DeviceContext> trans;
|
|
trans(context.template device_context<DeviceContext>(), in->data<T>(),
|
|
in->data<T>() + in->numel(), tensor->mutable_data<T>(in->place()),
|
|
ClipFunctor<T>(-scale, scale));
|
|
auto eigen_out = framework::EigenVector<T>::Flatten(*tensor);
|
|
auto eigen_in = framework::EigenVector<T>::Flatten(*tensor);
|
|
eigen_out.device(dev) = (bin_cnt / scale * eigen_in).round();
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|