You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
256 lines
8.8 KiB
256 lines
8.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <unistd.h>
|
|
#include <string>
|
|
#include <thread> // NOLINT
|
|
|
|
#include "gtest/gtest.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/operator.h"
|
|
#include "paddle/fluid/framework/program_desc.h"
|
|
#include "paddle/fluid/operators/listen_and_serv_op.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/operators/math/selected_rows_functor.h"
|
|
#include "paddle/fluid/string/printf.h"
|
|
|
|
USE_NO_KERNEL_OP(send);
|
|
USE_NO_KERNEL_OP(listen_and_serv);
|
|
USE_OP(sum);
|
|
|
|
namespace f = paddle::framework;
|
|
namespace p = paddle::platform;
|
|
namespace m = paddle::operators::math;
|
|
|
|
// global for simplicity.
|
|
std::unique_ptr<f::OperatorBase> listen_and_serv_op;
|
|
int selected_port;
|
|
|
|
void InitTensorsInScope(const p::CPUPlace &place, f::Scope *scope) {
|
|
p::CPUDeviceContext ctx(place);
|
|
for (int i = 0; i < 2; ++i) {
|
|
auto var_name = paddle::string::Sprintf("x%d", i);
|
|
auto var = scope->Var(var_name);
|
|
auto tensor = var->GetMutable<f::LoDTensor>();
|
|
tensor->Resize({10, 10});
|
|
float *expect = tensor->mutable_data<float>(place);
|
|
for (int64_t i = 0; i < tensor->numel(); ++i) {
|
|
expect[i] = static_cast<float>(i);
|
|
}
|
|
}
|
|
|
|
auto out_var = scope->Var("Out");
|
|
auto out_tensor = out_var->GetMutable<f::LoDTensor>();
|
|
out_tensor->Resize({10, 10});
|
|
out_tensor->mutable_data<float>(place); // allocate
|
|
}
|
|
|
|
void InitSelectedRowsInScope(const p::CPUPlace &place, f::Scope *scope) {
|
|
p::CPUDeviceContext ctx(place);
|
|
int64_t height = 10;
|
|
int64_t row_numel = 10;
|
|
m::SetConstant<p::CPUDeviceContext, float> set_one;
|
|
// init x0
|
|
std::vector<int64_t> rows0{0, 4, 7};
|
|
auto x0_var = scope->Var("x0");
|
|
auto x0 = x0_var->GetMutable<f::SelectedRows>();
|
|
x0->set_rows(rows0);
|
|
x0->set_height(height);
|
|
auto x0_value = x0->mutable_value();
|
|
x0_value->mutable_data<float>(
|
|
f::make_ddim({static_cast<int64_t>(rows0.size()), row_numel}), place);
|
|
set_one(ctx, x0_value, 1.0);
|
|
|
|
// init x1
|
|
std::vector<int64_t> rows1{2, 9};
|
|
auto x1_var = scope->Var("x1");
|
|
auto x1 = x1_var->GetMutable<f::SelectedRows>();
|
|
x1->set_rows(rows1);
|
|
x1->set_height(height);
|
|
auto x1_value = x1->mutable_value();
|
|
x1_value->mutable_data<float>(
|
|
f::make_ddim({static_cast<int64_t>(rows1.size()), row_numel}), place);
|
|
set_one(ctx, x1_value, 1.0);
|
|
|
|
auto out_var = scope->Var("Out");
|
|
auto out = out_var->GetMutable<f::SelectedRows>();
|
|
auto out_value = out->mutable_value();
|
|
out->set_height(height);
|
|
out_value->mutable_data<float>(f::make_ddim({5, 10}), place);
|
|
}
|
|
|
|
void AddOp(const std::string &type, const f::VariableNameMap &inputs,
|
|
const f::VariableNameMap &outputs, f::AttributeMap attrs,
|
|
f::BlockDesc *block, bool is_sparse) {
|
|
// insert output
|
|
for (auto kv : outputs) {
|
|
for (auto v : kv.second) {
|
|
auto var = block->Var(v);
|
|
var->SetDataType(f::proto::VarType::FP32);
|
|
var->SetPersistable(true);
|
|
if (is_sparse) {
|
|
var->SetType(f::proto::VarType::SELECTED_ROWS);
|
|
}
|
|
}
|
|
}
|
|
|
|
// insert op
|
|
auto op = block->AppendOp();
|
|
op->SetType(type);
|
|
for (auto &kv : inputs) {
|
|
op->SetInput(kv.first, kv.second);
|
|
}
|
|
for (auto &kv : outputs) {
|
|
op->SetOutput(kv.first, kv.second);
|
|
}
|
|
op->SetAttrMap(attrs);
|
|
}
|
|
|
|
void StartServerNet(bool is_sparse, std::atomic<bool> *initialized) {
|
|
f::Scope scope;
|
|
p::CPUPlace place;
|
|
VLOG(4) << "before init tensor";
|
|
if (is_sparse) {
|
|
InitSelectedRowsInScope(place, &scope);
|
|
} else {
|
|
InitTensorsInScope(place, &scope);
|
|
}
|
|
// sub program run in listen_and_serv_op, for simple test we use sum
|
|
f::ProgramDesc program;
|
|
const auto &root_block = program.Block(0);
|
|
std::vector<framework::BlockDesc *> optimize_blocks;
|
|
auto *optimize_block = program.AppendBlock(root_block);
|
|
optimize_blocks.push_back(optimize_block);
|
|
|
|
auto *prefetch_block = program.AppendBlock(root_block);
|
|
// X for server side tensors, RX for received tensors, must be of same shape.
|
|
AddOp("sum", {{"X", {"x0", "x1"}}}, {{"Out", {"Out"}}}, {}, optimize_block,
|
|
is_sparse);
|
|
f::AttributeMap attrs;
|
|
attrs.insert({"endpoint", std::string("127.0.0.1:0")});
|
|
attrs.insert({"Fanin", 1});
|
|
attrs.insert({"ParamList", std::vector<std::string>({"Out"})});
|
|
attrs.insert({"GradList", std::vector<std::string>({"x1"})});
|
|
attrs.insert({"optimize_blocks", optimize_blocks});
|
|
attrs.insert({"PrefetchBlock", prefetch_block});
|
|
attrs.insert({"grad_to_block_id", std::vector<std::string>({""})});
|
|
attrs.insert({"sync_mode", true});
|
|
VLOG(4) << "before init op";
|
|
listen_and_serv_op =
|
|
f::OpRegistry::CreateOp("listen_and_serv", {{"X", {"x1"}}}, {}, attrs);
|
|
*initialized = true;
|
|
listen_and_serv_op->Run(scope, place);
|
|
LOG(INFO) << "server exit";
|
|
}
|
|
|
|
TEST(SendRecvOp, CPUDense) {
|
|
std::atomic<bool> initialized{false};
|
|
std::thread server_thread(StartServerNet, false, &initialized);
|
|
while (!initialized) {
|
|
}
|
|
|
|
static_cast<paddle::operators::ListenAndServOp *>(listen_and_serv_op.get())
|
|
->WaitServerReady();
|
|
|
|
// local net
|
|
f::Scope scope;
|
|
p::CPUPlace place;
|
|
InitTensorsInScope(place, &scope);
|
|
// create rpc client var
|
|
scope.Var("RPC_CLIENT_VAR");
|
|
|
|
f::AttributeMap attrs;
|
|
auto *listen_and_serv_op_ptr =
|
|
static_cast<paddle::operators::ListenAndServOp *>(
|
|
listen_and_serv_op.get());
|
|
ASSERT_TRUE(listen_and_serv_op_ptr != nullptr);
|
|
selected_port = listen_and_serv_op_ptr->GetSelectedPort();
|
|
std::string endpoint = paddle::string::Sprintf("127.0.0.1:%d", selected_port);
|
|
attrs.insert({"endpoints", std::vector<std::string>({endpoint})});
|
|
attrs.insert({"epmap", std::vector<std::string>({endpoint})});
|
|
const f::VariableNameMap &inputs = {{"X", {"x1"}}};
|
|
const f::VariableNameMap &outputs = {{"Out", {"Out"}}};
|
|
|
|
auto send_op = f::OpRegistry::CreateOp("send", inputs, outputs, attrs);
|
|
send_op->Run(scope, place);
|
|
|
|
auto in_var = scope.Var("x1");
|
|
auto tensor = in_var->GetMutable<f::LoDTensor>();
|
|
float *expected = tensor->data<float>();
|
|
auto out_var = scope.Var("Out");
|
|
auto target = out_var->GetMutable<f::LoDTensor>();
|
|
// x1 * 2 == x0
|
|
EXPECT_NE(target->memory_size(), size_t(0));
|
|
float *actual = target->data<float>();
|
|
for (int64_t i = 0; i < target->numel(); ++i) {
|
|
EXPECT_EQ(expected[i] * 2, actual[i]);
|
|
}
|
|
listen_and_serv_op->Stop();
|
|
server_thread.join();
|
|
listen_and_serv_op.reset(nullptr);
|
|
paddle::operators::ListenAndServOp::ResetPort();
|
|
}
|
|
|
|
TEST(SendRecvOp, CPUSparse) {
|
|
std::atomic<bool> initialized;
|
|
initialized = false;
|
|
std::thread server_thread(StartServerNet, true, &initialized);
|
|
while (!initialized) {
|
|
}
|
|
auto *listen_and_serv_op_ptr =
|
|
static_cast<paddle::operators::ListenAndServOp *>(
|
|
listen_and_serv_op.get());
|
|
ASSERT_TRUE(listen_and_serv_op_ptr != nullptr);
|
|
listen_and_serv_op_ptr->WaitServerReady();
|
|
|
|
// local net
|
|
f::Scope scope;
|
|
p::CPUPlace place;
|
|
p::CPUDeviceContext ctx(place);
|
|
InitSelectedRowsInScope(place, &scope);
|
|
scope.Var("RPC_CLIENT_VAR");
|
|
f::AttributeMap attrs;
|
|
selected_port = listen_and_serv_op_ptr->GetSelectedPort();
|
|
std::string endpoint = paddle::string::Sprintf("127.0.0.1:%d", selected_port);
|
|
attrs.insert({"endpoints", std::vector<std::string>({endpoint})});
|
|
attrs.insert({"epmap", std::vector<std::string>({endpoint})});
|
|
auto send_op = f::OpRegistry::CreateOp("send", {{"X", {"x1"}}},
|
|
{{"Out", {"Out"}}}, attrs);
|
|
send_op->Run(scope, place);
|
|
|
|
auto x0 = scope.Var("x0")->GetMutable<f::SelectedRows>();
|
|
auto x1 = scope.Var("x1")->GetMutable<f::SelectedRows>();
|
|
auto out = scope.Var("Out")->GetMutable<f::SelectedRows>();
|
|
auto actual = out->mutable_value();
|
|
|
|
std::unique_ptr<f::SelectedRows> expect{new f::SelectedRows()};
|
|
auto expect_value = expect->mutable_value();
|
|
expect_value->mutable_data<float>(f::make_ddim({5, 10}), place);
|
|
|
|
m::SelectedRowsAdd<p::CPUDeviceContext, float> add_functor;
|
|
add_functor(ctx, *x0, *x1, expect.get());
|
|
|
|
EXPECT_EQ(actual->numel(), expect_value->numel());
|
|
EXPECT_EQ(out->rows().size(), x0->rows().size() + x1->rows().size());
|
|
|
|
for (int64_t i = 0; i < expect_value->numel(); ++i) {
|
|
EXPECT_EQ(expect_value->mutable_data<float>(place)[i],
|
|
actual->mutable_data<float>(place)[i]);
|
|
}
|
|
listen_and_serv_op->Stop();
|
|
server_thread.join();
|
|
listen_and_serv_op.reset();
|
|
paddle::operators::ListenAndServOp::ResetPort();
|
|
}
|