You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/vision/models/lenet.py

61 lines
1.8 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle
import paddle.nn as nn
__all__ = ['LeNet']
class LeNet(nn.Layer):
"""LeNet model from
`"LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.`_
Args:
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 10.
Examples:
.. code-block:: python
from paddle.vision.models import LeNet
model = LeNet()
"""
def __init__(self, num_classes=10):
super(LeNet, self).__init__()
self.num_classes = num_classes
self.features = nn.Sequential(
nn.Conv2d(
1, 6, 3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Conv2d(
6, 16, 5, stride=1, padding=0),
nn.ReLU(),
nn.MaxPool2d(2, 2))
if num_classes > 0:
self.fc = nn.Sequential(
nn.Linear(400, 120), nn.Linear(120, 84), nn.Linear(84, 10))
def forward(self, inputs):
x = self.features(inputs)
if self.num_classes > 0:
x = paddle.flatten(x, 1)
x = self.fc(x)
return x