You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
163 lines
6.6 KiB
163 lines
6.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/cos_sim_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class CosSimOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
// notnull check
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of CosSimOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Y"),
|
|
"Input(Y) of CosSimOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of CosSimOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("XNorm"),
|
|
"Output(XNorm) of CosSimOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("YNorm"),
|
|
"Output(YNorm) of CosSimOp should not be null.");
|
|
|
|
// shape check
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto y_dims = ctx->GetInputDim("Y");
|
|
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), y_dims.size(),
|
|
"Ranks of Input(X) and Input(Y) must be equal.");
|
|
PADDLE_ENFORCE_GE(x_dims.size(), 2,
|
|
"Rank of Input(X) must not be less than 2.");
|
|
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()),
|
|
framework::slice_ddim(y_dims, 1, y_dims.size()),
|
|
"All dimensions except the 1st of Input(X) and Input(Y) "
|
|
"must be equal.");
|
|
PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
|
|
"The 1st dimension of Input(Y) must be equal to Input(X) or"
|
|
" just 1 (which will be broadcasted to match Input(X)).");
|
|
|
|
// resize tensor
|
|
ctx->SetOutputDim("Out", {x_dims[0], 1});
|
|
ctx->SetOutputDim("XNorm", {x_dims[0], 1});
|
|
ctx->SetOutputDim("YNorm", {y_dims[0], 1});
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
};
|
|
|
|
class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
CosSimOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "The 1st input of cos_sim op.");
|
|
AddInput("Y", "The 2nd input of cos_sim op.");
|
|
AddOutput("Out", "The output of cos_sim op.");
|
|
AddOutput("XNorm",
|
|
"Norm of the first input, reduced along the 1st "
|
|
"dimension.")
|
|
.AsIntermediate();
|
|
AddOutput("YNorm",
|
|
"Norm of the second input, reduced along the 1st "
|
|
"dimension.")
|
|
.AsIntermediate();
|
|
|
|
AddComment(R"DOC(
|
|
Cosine Similarity Operator.
|
|
|
|
$Out = X^T * Y / (\sqrt{X^T * X} * \sqrt{Y^T * Y})$
|
|
|
|
The input X and Y must have the same shape, except that the 1st dimension
|
|
of input Y could be just 1 (different from input X), which will be
|
|
broadcasted to match the shape of input X before computing their cosine
|
|
similarity.
|
|
|
|
Both the input X and Y can carry the LoD (Level of Details) information,
|
|
or not. But the output only shares the LoD information with input X.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class CosSimOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
// notnull check
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("XNorm"), "Input(XNorm) must not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("YNorm"), "Input(YNorm) must not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) must not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) must not be null.");
|
|
|
|
// shape check
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto y_dims = ctx->GetInputDim("Y");
|
|
auto xnorm_dims = ctx->GetInputDim("XNorm");
|
|
auto ynorm_dims = ctx->GetInputDim("YNorm");
|
|
auto out_dims = ctx->GetInputDim("Out");
|
|
auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
|
|
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
|
|
"Ranks of Input(X) and Input(Y) must be equal.");
|
|
PADDLE_ENFORCE_GE(x_dims.size(), 2,
|
|
"Rank of Input(X) must not be less than 2.");
|
|
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()),
|
|
framework::slice_ddim(y_dims, 1, y_dims.size()),
|
|
"All dimensions except the 1st of Input(X) and Input(Y) "
|
|
"must be equal.");
|
|
PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
|
|
"The 1st dimension of Input(Y) must be equal to Input(X) or"
|
|
" just 1 (which will be broadcasted to match Input(X)).");
|
|
auto target_xnorm_dims = framework::make_ddim({x_dims[0], 1});
|
|
auto target_ynorm_dims = framework::make_ddim({y_dims[0], 1});
|
|
PADDLE_ENFORCE_EQ(xnorm_dims, target_xnorm_dims,
|
|
"Shape of Input(XNorm) must be [X.Dim(0), 1].");
|
|
PADDLE_ENFORCE_EQ(ynorm_dims, target_ynorm_dims,
|
|
"Shape of Input(YNorm) must be [Y.Dim(0), 1].");
|
|
PADDLE_ENFORCE_EQ(out_dims, target_xnorm_dims,
|
|
"Shape of Input(Out) must be [X.Dim(0), 1].");
|
|
PADDLE_ENFORCE_EQ(out_grad_dims, target_xnorm_dims,
|
|
"Shape of Input(Out@Grad) must be [X.Dim(0), 1].");
|
|
|
|
// resize tensor
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
auto y_grad_name = framework::GradVarName("Y");
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, x_dims);
|
|
}
|
|
if (ctx->HasOutput(y_grad_name)) {
|
|
ctx->SetOutputDim(y_grad_name, y_dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(cos_sim, ops::CosSimOp, ops::CosSimOpMaker, cos_sim_grad,
|
|
ops::CosSimOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
cos_sim, ops::CosSimKernel<paddle::platform::CPUDeviceContext, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
cos_sim_grad,
|
|
ops::CosSimGradKernel<paddle::platform::CPUDeviceContext, float>);
|