You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
135 lines
4.3 KiB
135 lines
4.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
|
|
|
|
template <typename DeviceContext, typename T, size_t D>
|
|
void PadFunction(const framework::ExecutionContext& context) {
|
|
auto pads = context.Attr<std::vector<int>>("paddings");
|
|
Eigen::array<std::pair<int, int>, D> paddings;
|
|
for (size_t i = 0; i < paddings.size(); ++i) {
|
|
paddings[i].first = pads[i * 2];
|
|
paddings[i].second = pads[i * 2 + 1];
|
|
}
|
|
T pad_value = context.Attr<T>("pad_value");
|
|
|
|
auto* x = context.Input<Tensor>("X");
|
|
auto* out = context.Output<Tensor>("Out");
|
|
out->mutable_data<T>(context.GetPlace());
|
|
|
|
auto x_tensor = EigenTensor<T, D>::From(*x);
|
|
auto out_tensor = EigenTensor<T, D>::From(*out);
|
|
auto& place =
|
|
*context.template device_context<DeviceContext>().eigen_device();
|
|
out_tensor.device(place) = x_tensor.pad(paddings, pad_value);
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class PadKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
int rank = context.Input<Tensor>("X")->dims().size();
|
|
switch (rank) {
|
|
case 1:
|
|
PadFunction<DeviceContext, T, 1>(context);
|
|
break;
|
|
case 2:
|
|
PadFunction<DeviceContext, T, 2>(context);
|
|
break;
|
|
case 3:
|
|
PadFunction<DeviceContext, T, 3>(context);
|
|
break;
|
|
case 4:
|
|
PadFunction<DeviceContext, T, 4>(context);
|
|
break;
|
|
case 5:
|
|
PadFunction<DeviceContext, T, 5>(context);
|
|
break;
|
|
case 6:
|
|
PadFunction<DeviceContext, T, 6>(context);
|
|
break;
|
|
default:
|
|
PADDLE_THROW(
|
|
"PadOp only support tensors with no more than 6 dimensions.");
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T, size_t D>
|
|
void PadGradFunction(const framework::ExecutionContext& context) {
|
|
auto pads = context.Attr<std::vector<int>>("paddings");
|
|
Eigen::array<std::pair<int, int>, D> paddings;
|
|
for (size_t i = 0; i < paddings.size(); ++i) {
|
|
paddings[i].first = -pads[i * 2];
|
|
paddings[i].second = -pads[i * 2 + 1];
|
|
}
|
|
auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
|
|
if (d_x != nullptr) {
|
|
d_x->mutable_data<T>(context.GetPlace());
|
|
auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
|
|
auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
|
|
auto& place =
|
|
*context.template device_context<DeviceContext>().eigen_device();
|
|
d_x_tensor.device(place) = d_out_tensor.pad(paddings, 0);
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class PadGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
size_t rank =
|
|
context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
|
|
switch (rank) {
|
|
case 1:
|
|
PadGradFunction<DeviceContext, T, 1>(context);
|
|
break;
|
|
case 2:
|
|
PadGradFunction<DeviceContext, T, 2>(context);
|
|
break;
|
|
case 3:
|
|
PadGradFunction<DeviceContext, T, 3>(context);
|
|
break;
|
|
case 4:
|
|
PadGradFunction<DeviceContext, T, 4>(context);
|
|
break;
|
|
case 5:
|
|
PadGradFunction<DeviceContext, T, 5>(context);
|
|
break;
|
|
case 6:
|
|
PadGradFunction<DeviceContext, T, 6>(context);
|
|
break;
|
|
default:
|
|
PADDLE_THROW(
|
|
"PadOp only support tensors with no more than 6 dimensions.");
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|