You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
115 lines
4.1 KiB
115 lines
4.1 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/utils/Logging.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class PositiveNegativePairKernel : public framework::OpKernel<T> {
|
|
public:
|
|
struct PredictionResult {
|
|
PredictionResult(T score, T label, T weight)
|
|
: score(score), label(label), weight(weight) {}
|
|
T score;
|
|
T label;
|
|
T weight;
|
|
};
|
|
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto score_t = context.Input<Tensor>("Score");
|
|
auto label_t = context.Input<Tensor>("Label");
|
|
auto query_t = context.Input<Tensor>("QueryID");
|
|
auto acc_positive_t = context.Input<Tensor>("AccumulatePositivePair");
|
|
auto acc_negative_t = context.Input<Tensor>("AccumulateNegativePair");
|
|
auto acc_neutral_t = context.Input<Tensor>("AccumulateNeutralPair");
|
|
auto positive_t = context.Output<Tensor>("PositivePair");
|
|
auto negative_t = context.Output<Tensor>("NegativePair");
|
|
auto neutral_t = context.Output<Tensor>("NeutralPair");
|
|
auto weight_t = context.Input<Tensor>("Weight");
|
|
|
|
auto score = score_t->data<T>();
|
|
auto label = label_t->data<T>();
|
|
auto query = query_t->data<int64_t>();
|
|
const T* weight = nullptr;
|
|
if (weight_t != nullptr) {
|
|
weight = weight_t->data<T>();
|
|
}
|
|
T* positive = positive_t->mutable_data<T>(context.GetPlace());
|
|
T* negative = negative_t->mutable_data<T>(context.GetPlace());
|
|
T* neutral = neutral_t->mutable_data<T>(context.GetPlace());
|
|
|
|
auto score_dim = score_t->dims();
|
|
auto batch_size = score_dim[0];
|
|
auto width = score_dim[1];
|
|
auto column = context.Attr<int32_t>("column");
|
|
if (column < 0) {
|
|
column += width;
|
|
}
|
|
|
|
// construct document instances for each query: Query => List[<score#0,
|
|
// label#0, weight#0>, ...]
|
|
std::unordered_map<int64_t, std::vector<PredictionResult>> predictions;
|
|
for (auto i = 0; i < batch_size; ++i) {
|
|
if (predictions.find(query[i]) == predictions.end()) {
|
|
predictions.emplace(
|
|
std::make_pair(query[i], std::vector<PredictionResult>()));
|
|
}
|
|
predictions[query[i]].emplace_back(score[i * width + column], label[i],
|
|
weight_t != nullptr ? weight[i] : 1.0);
|
|
}
|
|
|
|
// for each query, accumulate pair counts
|
|
T pos = 0, neg = 0, neu = 0;
|
|
if (acc_positive_t != nullptr && acc_negative_t != nullptr &&
|
|
acc_neutral_t != nullptr) {
|
|
pos = acc_positive_t->data<T>()[0];
|
|
neg = acc_negative_t->data<T>()[0];
|
|
neu = acc_neutral_t->data<T>()[0];
|
|
}
|
|
auto evaluate_one_list = [&pos, &neg,
|
|
&neu](std::vector<PredictionResult> vec) {
|
|
for (auto ite1 = vec.begin(); ite1 != vec.end(); ++ite1) {
|
|
for (auto ite2 = ite1 + 1; ite2 != vec.end(); ++ite2) {
|
|
if (ite1->label == ite2->label) { // labels are equal, ignore.
|
|
continue;
|
|
}
|
|
T w = (ite1->weight + ite2->weight) * 0.5;
|
|
if (ite1->score == ite2->score) {
|
|
neu += w;
|
|
}
|
|
(ite1->score - ite2->score) * (ite1->label - ite2->label) > 0.0
|
|
? pos += w
|
|
: neg += w;
|
|
}
|
|
}
|
|
};
|
|
for (auto prediction : predictions) {
|
|
evaluate_one_list(prediction.second);
|
|
}
|
|
*positive = pos;
|
|
*negative = neg;
|
|
*neutral = neu;
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|