You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
77 lines
2.7 KiB
77 lines
2.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class TopkKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
// Get the top k elements of each row of input tensor
|
|
// FIXME: only deal with matrix(2d tensor).
|
|
auto* input = ctx.Input<Tensor>("X");
|
|
auto* output = ctx.Output<Tensor>("Out");
|
|
auto* indices = ctx.Output<Tensor>("Indices");
|
|
// k is determined by Attr
|
|
const size_t k = static_cast<int>(ctx.Attr<int>("k"));
|
|
|
|
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());
|
|
|
|
auto eg_input = EigenMatrix<T>::From(*input);
|
|
|
|
// reshape input to a flattern matrix(like flat_inner_dims)
|
|
framework::DDim inputdims = input->dims();
|
|
const size_t row = framework::product(
|
|
framework::slice_ddim(inputdims, 0, inputdims.size() - 1));
|
|
const size_t col = inputdims[inputdims.size() - 1];
|
|
Eigen::DSizes<int, 2> flat2dims(row, col);
|
|
// NOTE: eigen shape doesn't affect paddle tensor.
|
|
eg_input.reshape(flat2dims);
|
|
|
|
for (size_t i = 0; i < row; i++) {
|
|
std::vector<std::pair<T, size_t>> vec;
|
|
for (size_t j = 0; j < col; j++) {
|
|
vec.push_back(std::pair<T, size_t>(eg_input(i, j), j));
|
|
}
|
|
|
|
std::partial_sort(
|
|
vec.begin(), vec.begin() + k, vec.end(),
|
|
[](const std::pair<T, size_t>& l, const std::pair<T, size_t>& r) {
|
|
return l.first > r.first;
|
|
});
|
|
for (size_t j = 0; j < k; j++) {
|
|
output_data[i * k + j] = vec[j].first;
|
|
indices_data[i * k + j] = int64_t(vec[j].second);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|