You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
121 lines
3.3 KiB
121 lines
3.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "Layer.h"
|
|
#include "paddle/math/Matrix.h"
|
|
#include "paddle/utils/Logging.h"
|
|
#include "paddle/utils/Stat.h"
|
|
|
|
namespace paddle {
|
|
|
|
/**
|
|
* A layer for sum-to-one normalization,
|
|
* which is used in NEURAL TURING MACHINE.
|
|
* \f[
|
|
* out[i] = \frac {in[i]} {\sum_{k=1}^N in[k]}
|
|
* \f]
|
|
* where \f$in\f$ is a (batchSize x dataDim) input vector,
|
|
* and \f$out\f$ is a (batchSize x dataDim) output vector.
|
|
*
|
|
* The config file api is sum_to_one_norm_layer.
|
|
*/
|
|
|
|
class SumToOneNormLayer : public Layer {
|
|
protected:
|
|
/// reciprocalRowSum_ = \f$1 / \sum_{k=1}^N in[k]\f$
|
|
MatrixPtr reciprocalRowSum_;
|
|
/// dotSum = output_.grad \f$.*\f$ output_.value
|
|
MatrixPtr dotSum_;
|
|
|
|
public:
|
|
explicit SumToOneNormLayer(const LayerConfig& config) : Layer(config) {}
|
|
|
|
bool init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) override;
|
|
|
|
void forward(PassType passType) override;
|
|
void backward(const UpdateCallback& callback = nullptr) override;
|
|
};
|
|
|
|
REGISTER_LAYER(sum_to_one_norm, SumToOneNormLayer);
|
|
|
|
bool SumToOneNormLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
Layer::init(layerMap, parameterMap);
|
|
|
|
CHECK_EQ(inputLayers_.size(), 1U);
|
|
|
|
return true;
|
|
}
|
|
|
|
void SumToOneNormLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
MatrixPtr inV = getInputValue(0);
|
|
|
|
/* malloc memory for the output_ if necessary */
|
|
size_t batchSize = inV->getHeight();
|
|
size_t dataDim = getSize();
|
|
|
|
CHECK_EQ(dataDim, inV->getWidth());
|
|
|
|
{
|
|
REGISTER_TIMER_INFO("FwResetTimer", getName().c_str());
|
|
resetOutput(batchSize, dataDim);
|
|
}
|
|
|
|
MatrixPtr outV = getOutputValue();
|
|
{
|
|
REGISTER_TIMER_INFO("FwSumToOneNormTimer", getName().c_str());
|
|
|
|
Matrix::resizeOrCreate(reciprocalRowSum_, batchSize, 1, false, useGpu_);
|
|
inV->rowSum(*reciprocalRowSum_);
|
|
|
|
// todo: matrix checks
|
|
CHECK_GT(reciprocalRowSum_->getMin(), 0.0);
|
|
|
|
reciprocalRowSum_->scalarDiv(*reciprocalRowSum_, 1.0);
|
|
|
|
// outV = inV * reciprocalRowSum
|
|
outV->rowScale(0, *inV, *reciprocalRowSum_);
|
|
}
|
|
}
|
|
|
|
void SumToOneNormLayer::backward(const UpdateCallback& callback) {
|
|
MatrixPtr inV = getInputValue(0);
|
|
MatrixPtr inG = getInputGrad(0);
|
|
MatrixPtr outV = getOutputValue();
|
|
MatrixPtr outG = getOutputGrad();
|
|
|
|
size_t batchSize = inV->getHeight();
|
|
|
|
if (inG) {
|
|
REGISTER_TIMER_INFO("BwSumToOneTimer", getName().c_str());
|
|
|
|
Matrix::resizeOrCreate(dotSum_, batchSize, 1, false, useGpu_);
|
|
|
|
// dotSum = outG .* outV
|
|
dotSum_->zeroMem();
|
|
dotSum_->rowDotMul(0, *outG, *outV);
|
|
|
|
// inG += -1 * (dotSum / rowSum)
|
|
dotSum_->dotMul(*dotSum_, *reciprocalRowSum_);
|
|
inG->rowAdd(0, *inG, *dotSum_, -1.0);
|
|
// inG += outG * (1/rowSum)
|
|
inG->addRowScale(0, *outG, *reciprocalRowSum_);
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|