You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
117 lines
3.2 KiB
117 lines
3.2 KiB
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from paddle.trainer.PyDataProvider2 import *
|
|
|
|
# Note that each config should has an independent provider
|
|
# in current design of PyDataProvider2.
|
|
#######################################################
|
|
data = [
|
|
[[[1, 3, 2], [4, 5, 2]], 0],
|
|
[[[0, 2], [2, 5], [0, 1, 2]], 1],
|
|
]
|
|
|
|
|
|
# Used for sequence_nest_rnn.conf
|
|
@provider(
|
|
input_types=[integer_value_sub_sequence(10), integer_value(3)],
|
|
should_shuffle=False)
|
|
def process_subseq(settings, file_name):
|
|
for d in data:
|
|
yield d
|
|
|
|
|
|
# Used for sequence_rnn.conf
|
|
@provider(
|
|
input_types=[integer_value_sequence(10), integer_value(3)],
|
|
should_shuffle=False)
|
|
def process_seq(settings, file_name):
|
|
for d in data:
|
|
seq = []
|
|
for subseq in d[0]:
|
|
seq += subseq
|
|
yield seq, d[1]
|
|
|
|
|
|
# Used for sequence_nest_rnn_multi_input.conf
|
|
@provider(
|
|
input_types=[integer_value_sub_sequence(10), integer_value(3)],
|
|
should_shuffle=False)
|
|
def process_subseq2(settings, file_name):
|
|
for d in data:
|
|
yield d
|
|
|
|
|
|
# Used for sequence_rnn_multi_input.conf
|
|
@provider(
|
|
input_types=[integer_value_sequence(10), integer_value(3)],
|
|
should_shuffle=False)
|
|
def process_seq2(settings, file_name):
|
|
for d in data:
|
|
seq = []
|
|
for subseq in d[0]:
|
|
seq += subseq
|
|
yield seq, d[1]
|
|
|
|
|
|
###########################################################
|
|
data2 = [
|
|
[[[1, 2], [4, 5, 2]], [[5, 4, 1], [3, 1]], 0],
|
|
[[[0, 2], [2, 5], [0, 1, 2]], [[1, 5], [4], [2, 3, 6, 1]], 1],
|
|
]
|
|
|
|
|
|
# Used for sequence_nest_rnn_multi_unequalength_inputs.conf
|
|
@provider(
|
|
input_types=[
|
|
integer_value_sub_sequence(10), integer_value_sub_sequence(10),
|
|
integer_value(2)
|
|
],
|
|
should_shuffle=False)
|
|
def process_unequalength_subseq(settings, file_name):
|
|
for d in data2:
|
|
yield d
|
|
|
|
|
|
# Used for sequence_rnn_multi_unequalength_inputs.conf
|
|
@provider(
|
|
input_types=[
|
|
integer_value_sequence(10), integer_value_sequence(10), integer_value(2)
|
|
],
|
|
should_shuffle=False)
|
|
def process_unequalength_seq(settings, file_name):
|
|
for d in data2:
|
|
words1 = reduce(lambda x, y: x + y, d[0])
|
|
words2 = reduce(lambda x, y: x + y, d[1])
|
|
yield words1, words2, d[2]
|
|
|
|
|
|
###########################################################
|
|
data3 = [
|
|
[[[1, 2], [4, 5, 2]], [1, 2], 0],
|
|
[[[0, 2], [2, 5], [0, 1, 2]], [2, 3, 0], 1],
|
|
]
|
|
|
|
|
|
# Used for sequence_nest_mixed_inputs.conf
|
|
@provider(
|
|
input_types=[
|
|
integer_value_sub_sequence(10), integer_value_sequence(10),
|
|
integer_value(2)
|
|
],
|
|
should_shuffle=False)
|
|
def process_mixed(settings, file_name):
|
|
for d in data3:
|
|
yield d
|