You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/contrib/slim/quantization/quantization_pass.py

319 lines
14 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from .... import core
from ....framework import IrGraph
from ....framework import Program
from ....framework import Variable
from ....initializer import Constant
from .... import unique_name
__all__ = ['QuantizationTransformPass']
class QuantizationTransformPass(object):
def __init__(self,
scope=None,
program_exe=None,
weight_bits=8,
activation_bits=8,
activation_quantize_type='abs_max',
weight_quantize_type='abs_max',
window_size=10000):
"""
Convert and rewrite the IrGraph according to weight and
activation quantization type.
Args:
weight_bits (int): quantization bit number for weights,
the bias is not quantized.
activation_bits (int): quantization bit number for activation.
activation_quantize_type (str): quantization type for activation,
now support 'abs_max', 'range_abs_max'. If use 'abs_max' mode,
the quantization scale will be calculated dynamically each step
in both training and testing period. If use 'range_abs_max',
a static quantization scale will be calculated during training
and used in inference.
weight_quantize_type (str): quantization type for weights,
support 'abs_max'. The 'range_abs_max' usually is not used for
weight, since weights are fixed once the model is well trained.
window_size (int): the window size for 'range_abs_max' quantization.
Examples:
.. code-block:: python
# The original graph will be rewrite.
import paddle.fluid as fluid
from paddle.fluid.contrib.slim.quantization \
import QuantizationTransformPass
from paddle.fluid.contrib.slim.graph import IrGraph
from paddle.fluid import core
graph = IrGraph(core.Graph(program.desc), for_test=False)
exe = fluid.Executor(fluid.CPUPlace())
transform_pass = QuantizationTransformPass(fluid.global_scope(),
exe)
transform_pass.apply(graph)
"""
self._scope = scope
self._program_exe = program_exe
self._weight_bits = weight_bits
self._activation_bits = activation_bits
quant_type = ['abs_max', 'range_abs_max']
if activation_quantize_type not in quant_type:
raise ValueError(
"Unknown activation_quantize_type : '%s'. It can only be ",
"'abs_max' or 'range_abs_max'.", str(activation_quantize_type))
if weight_quantize_type not in quant_type:
raise ValueError(
"Unknown weight_quantize_type: '%s'. It can only be ",
"'abs_max' or 'range_abs_max'.", str(weight_quantize_type))
self._activation_quantize_type = activation_quantize_type
self._weight_quantize_type = weight_quantize_type
self._window_size = window_size
self._need_initialized = collections.OrderedDict()
self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
self._quantizable_grad_ops = [
'%s_grad' % (op) for op in self._quantizable_ops
]
self._fake_quant_op_types = [
'fake_quantize_abs_max', 'fake_quantize_range_abs_max'
]
self._fake_dequant_op_types = ['fake_dequantize_max_abs']
self._is_test = None
self._global_step = None
def apply(self, graph):
assert isinstance(graph,
IrGraph), 'graph must be the instance of IrGraph.'
self._need_initialized.clear()
self._is_test = graph.is_test()
# marked the variable which has been dequantized.
dequantized_vars = collections.OrderedDict()
params = [p.name() for p in graph.all_parameters()]
def _transform_forward(graph, op):
for var_node in op.inputs:
if var_node.name() in dequantized_vars:
dequant_var_node = dequantized_vars[var_node.name()]
else:
quant_bits = self._weight_bits if var_node.name() in params \
else self._activation_bits
quant_type = self._weight_quantize_type if var_node.name() \
in params else self._activation_quantize_type
quant_var_node, scale_var_node = self._insert_quant_op(
graph, var_node, quant_bits, quant_type)
dequant_var_node = self._insert_dequant_op(
graph, quant_var_node, scale_var_node, quant_bits)
dequantized_vars[var_node.name()] = dequant_var_node
graph.update_input_link(var_node, dequant_var_node, op)
def _transform_backward(graph, op):
no_dequanted_input_vars = True
for var_node in op.inputs:
if var_node.name() in dequantized_vars:
dequant_var_node = dequantized_vars[var_node.name()]
graph.update_input_link(var_node, dequant_var_node, op)
no_dequanted_input_vars = False
if no_dequanted_input_vars:
raise ValueError("There is no dequanted inputs for op %s." %
(op.name()))
if not self._is_test:
self._create_global_step(graph)
ops = graph.all_ops()
# The process of _transform_forward and _transform_backward is needed in two for loops.
# The loop for transforming the forward graph:
for op in ops:
if op.name() in self._quantizable_ops:
_transform_forward(graph, op)
# The loop for renaming the inputs of backward op.
for op in ops:
if op.name() in self._quantizable_grad_ops:
_transform_backward(graph, op)
if len(self._need_initialized) > 0:
assert self._scope is not None, \
'The scope cannot be set None when activation_quantize_type equals to range_abs_max.'
assert self._program_exe is not None, \
'The program_exe cannot be set None when activation_quantize_type equals to range_abs_max.'
init_program = Program()
for var_desc, initializer in self._need_initialized.iteritems():
var = Variable(init_program.global_block())
var._set_desc(var_desc)
initializer(var, init_program.global_block())
self._program_exe.run(program=init_program, scope=self._scope)
return graph
def _create_global_step(self, graph):
if self._weight_quantize_type == 'range_abs_max' or \
self._activation_quantize_type == 'range_abs_max':
counter_name = '@STEP_COUNTER@'
for node in graph.all_vars():
if node.name() == counter_name:
self._global_step = node
if self._global_step is None:
global_step_in = graph.create_param_node(
name=counter_name,
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[1],
var_dtype=core.VarDesc.VarType.INT64)
self._need_initialized[global_step_in.var()] = \
Constant(value=0, force_cpu=True)
global_step_out = graph.create_var_node_from_desc(
global_step_in.var())
increment_op = graph.create_op_node(
op_type='increment',
attrs={'step': 1.0},
inputs={'X': global_step_in},
outputs={'Out': global_step_out})
graph.link_to(global_step_in, increment_op)
graph.link_to(increment_op, global_step_out)
self._global_step = global_step_out
def _insert_quant_op(self, graph, var_node, quant_bits, quant_type):
"""
Insert fake_quantize_op in the graph.
"""
if quant_type == 'abs_max':
return self._insert_quant_abs_max_op(graph, var_node, quant_bits)
elif quant_type == 'range_abs_max':
return self._insert_quant_range_abs_max_op(graph, var_node,
quant_bits)
def _insert_quant_abs_max_op(self, graph, var_node, quant_bits):
"""
Insert fake_quantize_abs_max op in the graph.
"""
assert var_node.is_var(), '{} is not a var'.format(var_node.name())
quant_var_node = graph.create_var_node(
name=self._quantized_var_name(var_node.name()),
var_type=var_node.var().type(),
shape=var_node.var().shape(),
var_dtype=var_node.var().dtype())
scale_var_node = graph.create_var_node(
name=self._quantized_scale_name(var_node.name()),
var_type=var_node.var().type(),
shape=var_node.var().shape(),
var_dtype=var_node.var().dtype())
quant_op_node = graph.create_op_node(
op_type='fake_quantize_abs_max',
attrs={'bit_length': quant_bits},
inputs={'X': var_node},
outputs={'Out': quant_var_node,
'OutScale': scale_var_node})
graph.link_to(var_node, quant_op_node)
graph.link_to(quant_op_node, quant_var_node)
graph.link_to(quant_op_node, scale_var_node)
return quant_var_node, scale_var_node
def _insert_quant_range_abs_max_op(self, graph, var_node, quant_bits):
"""
Insert fake_quantize_range_abs_max on the graph.
"""
assert var_node.is_var(), '{} is not a var'.format(var_node.name())
quant_var_node = graph.create_var_node(
name=self._quantized_var_name(var_node.name()),
var_type=var_node.var().type(),
shape=var_node.var().shape(),
var_dtype=var_node.var().dtype())
scale_in_node = graph.create_param_node(
name=self._quantized_scale_name(var_node.name()),
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[1],
var_dtype=var_node.var().dtype())
self._need_initialized[scale_in_node.var()] = Constant(value=0.001)
scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
inputs = {'X': var_node, 'InScale': scale_in_node}
outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}
if not self._is_test:
# The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
scales_node = graph.create_param_node(
name=unique_name.generate('scales'),
var_type=core.VarDesc.VarType.LOD_TENSOR,
shape=[self._window_size],
var_dtype=var_node.var().dtype())
self._need_initialized[scales_node.var()] = Constant(value=0)
inputs['Iter'] = self._global_step
outputs['OutScales'] = scales_node
attrs = {
'window_size': self._window_size,
'bit_length': quant_bits,
'is_test': self._is_test
}
quant_op_node = graph.create_op_node(
op_type='fake_quantize_range_abs_max',
attrs=attrs,
inputs=inputs,
outputs=outputs)
graph.link_to(var_node, quant_op_node)
graph.link_to(scale_in_node, quant_op_node)
graph.link_to(quant_op_node, quant_var_node)
graph.link_to(quant_op_node, scale_out_node)
if not self._is_test:
graph.link_to(self._global_step, quant_op_node)
graph.link_to(quant_op_node, scales_node)
return quant_var_node, scale_out_node
def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
"""
Insert fake_dequantize_op in the graph.
"""
assert var_node.is_var(), '{} is not a var'.format(var_node.name())
dequant_var_node = graph.create_var_node(
name=self._dequantized_var_name(var_node.name()),
var_type=var_node.var().type(),
shape=var_node.var().shape(),
var_dtype=var_node.var().dtype())
max_range = (1 << (quant_bits - 1)) - 1
dequant_op_node = graph.create_op_node(
op_type='fake_dequantize_max_abs',
attrs={'max_range': float(max_range)},
inputs={'X': var_node,
'Scale': scale_var_node},
outputs={'Out': dequant_var_node})
graph.link_to(var_node, dequant_op_node)
graph.link_to(scale_var_node, dequant_op_node)
graph.link_to(dequant_op_node, dequant_var_node)
return dequant_var_node
def _quantized_var_name(self, var_name):
"""
Return quantized variable name for the input `var_name`.
"""
return "%s.quantized" % (var_name)
def _dequantized_var_name(self, var_name):
"""
Return dequantized variable name for the input `var_name`.
"""
return "%s.dequantized" % (var_name)
def _quantized_scale_name(self, var_name):
"""
Return quantized variable name for the input `var_name`.
"""
return "%s.scale" % (var_name)